
Hybrid Inference

Frank Dellaert

January 2023

1 Hybrid Conditionals

Here we develop a hybrid conditional density, on continuous variables (typically a measurement x),
given a mix of continuous variables y and discrete variables m. We start by reviewing a Gaus-
sian conditional density and its invariants (relationship between density, error, and normalization
constant), and then work out what needs to happen for a hybrid version.

GaussianConditional

A GaussianConditional is a properly normalized, multivariate Gaussian conditional density:

P (x|y) =
1√
|2πΣ|

exp

{
−1

2
‖Rx+ Sy − d‖2Σ

}
where R is square and upper-triangular. For every GaussianConditional, we have the following
invariant,

logP (x|y) = Kgc − Egc(x, y), (1)

with the log-normalization constant Kgc equal to

Kgc = log
1√
|2πΣ|

(2)

and the error Egc(x, y) equal to the negative log-density, up to a constant:

Egc(x, y) =
1

2
‖Rx+ Sy − d‖2Σ. (3)

.

GaussianMixture

A GaussianMixture (maybe to be renamed to GaussianMixtureComponent) just indexes into a
number of GaussianConditional instances, that are each properly normalized:

P (x|y,m) = Pm(x|y).

We store one GaussianConditional Pm(x|y) for every possible assignment m to a set of discrete
variables. As GaussianMixture is a Conditional, it needs to satisfy the a similar invariant to (1):

logP (x|y,m) = Kgm − Egm(x, y,m). (4)

1

If we take the log of P (x|y,m) we get

logP (x|y,m) = logPm(x|y) = Kgc(m)− Egcm(x, y). (5)

For conciseness, we will write Kgc(m) as Kgcm.

The key point here is that Kgm is the log-normalization constant for the complete GaussianMixture
across all values of m, and cannot be dependent on the value of m. In contrast, Kgcm is the log-
normalization constant for a specific GaussianConditional mode (thus dependent on m) and can
have differing values based on the covariance matrices for each mode. Thus to obtain a constant
Kgm which satisfies the invariant, we need to specify Egm(x, y,m) accordingly.

By equating (4) and (5), we see that this can be achieved by defining the error Egm(x, y,m) as

Egm(x, y,m) = Egcm(x, y) +Kgm −Kgcm (6)

where choose Kgm = maxKgcm, as then the error will always be positive.

2 Hybrid Factors

In GTSAM, we typically condition on known measurements, and factors encode the resulting nega-
tive log-likelihood of the unknown variables y given the measurements x. We review how a Gaussian
conditional density is converted into a Gaussian factor, and then develop a hybrid version satisfying
the correct invariants as well.

JacobianFactor

A JacobianFactor typically results from a GaussianConditional by having known values x̄ for the
“measurement” x:

L(y) ∝ P (x̄|y) (7)

In GTSAM factors represent the negative log-likelihood Ejf (y) and hence we have

Ejf (y) = − logL(y) = C − logP (x̄|y),

with C the log of the proportionality constant in (7). Substituting in logP (x̄|y) from the invariant
(1) we obtain

Ejf (y) = C −Kgc + Egc(x̄, y).

The likelihood function in GaussianConditional chooses C = Kgc, and the JacobianFactor does not
store any constant; it just implements:

Ejf (y) = Egc(x̄, y) =
1

2
‖Rx̄+ Sy − d‖2Σ =

1

2
‖Ay − b‖2Σ

with A = S and b = d−Rx̄.

2

GaussianMixtureFactor

Analogously, a GaussianMixtureFactor typically results from a GaussianMixture by having known
values x̄ for the “measurement” x:

L(y,m) ∝ P (x̄|y,m).

We will similarly implement the negative log-likelihood Emf (y,m):

Emf (y,m) = − logL(y,m) = C − logP (x̄|y,m).

Since we know the log-density from the invariant (4), we obtain

logP (x̄|y,m) = Kgm − Egm(x̄, y,m),

and hence
Emf (y,m) = C + Egm(x̄, y,m)−Kgm.

Substituting in (6) we finally have an expression where Kgm canceled out, but we have a dependence
on the individual component constants Kgcm:

Emf (y,m) = C + Egcm(x̄, y)−Kgcm (8)

Unfortunately, we can no longer choose C independently from m to make the constant disappear,
since C has to be a constant applicable across all m.

There are two possibilities:

1. Implement likelihood to yield both a hybrid factor and a discrete factor.

2. Hide the constant inside the collection of JacobianFactor instances, which is the possibility
we implement.

In either case, we implement the mixture factor Emf (y,m) as a set of JacobianFactor instances
Emf (y,m), indexed by the discrete assignment m:

Emf (y,m) = Ejfm(y) =
1

2
‖Amy − bm‖2Σmfm

.

In GTSAM, we define Am and bm strategically to make the JacobianFactor compute the constant,
as well:

1

2
‖Amy − bm‖2Σmfm

= C + Egcm(x̄, y)−Kgcm.

Substituting in the definition (3) for Egcm(x̄, y) we need

1

2
‖Amy − bm‖2Σmfm

= C +
1

2
‖Rmx̄+ Smy − dm‖2Σm

−Kgcm

which can achieved by setting

Am =

[
Sm
0

]
, bm =

[
dm −Rmx̄

cm

]
, Σmfm =

[
Σm

1

]

and setting the mode-dependent scalar cm such that c2
m = C − Kgcm. This can be achieved by

C = maxKgcm = Kgm and cm =
√

2(C −Kgcm). Note that in case that all constants Kgcm are
equal, we can just use C = Kgm and

Am = Sm, bm = dm −Rmx̄, Σmfm = Σm

3

as before.
In summary, we have

Emf (y,m) =
1

2
‖Amy − bm‖2Σmfm

= Egcm(x̄, y) +Kgm −Kgcm. (9)

which is identical to the GaussianMixture error (6).

4

