Compare commits
No commits in common. "f64ebfd4d8e59ec3c0d3a63ce4a23acbf0019858" and "cc4a0e18048354a2dad3492b0c220a00019277ef" have entirely different histories.
f64ebfd4d8
...
cc4a0e1804
|
@ -1,7 +1,7 @@
|
||||||
# This workflow builds the Python wheels using cibuildwheel and uploads them to TestPyPI.
|
# This workflow builds the Python wheels using cibuildwheel and uploads them to TestPyPI.
|
||||||
# It can be triggered on push to the develop branch or manually via Github Actions.
|
# It can be triggered on push to the develop branch or manually via Github Actions.
|
||||||
|
|
||||||
name: Build Wheels for Develop
|
name: Build Wheels (cibuildwheel)
|
||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
|
|
|
@ -1,188 +0,0 @@
|
||||||
# This workflow builds the Python wheels using cibuildwheel and uploads them to TestPyPI.
|
|
||||||
# It can be triggered on push to the develop branch or manually via Github Actions.
|
|
||||||
|
|
||||||
name: Build Wheels for Release
|
|
||||||
|
|
||||||
on:
|
|
||||||
release:
|
|
||||||
types: [published]
|
|
||||||
workflow_dispatch:
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
build_wheels:
|
|
||||||
name: Build Wheels
|
|
||||||
runs-on: ${{ matrix.os }}
|
|
||||||
strategy:
|
|
||||||
fail-fast: false
|
|
||||||
matrix:
|
|
||||||
include:
|
|
||||||
# Linux x86_64
|
|
||||||
- os: ubuntu-latest
|
|
||||||
python_version: "3.10"
|
|
||||||
cibw_python_version: 310
|
|
||||||
platform_id: manylinux_x86_64
|
|
||||||
manylinux_image: manylinux2014
|
|
||||||
- os: ubuntu-latest
|
|
||||||
python_version: "3.11"
|
|
||||||
cibw_python_version: 311
|
|
||||||
platform_id: manylinux_x86_64
|
|
||||||
manylinux_image: manylinux2014
|
|
||||||
- os: ubuntu-latest
|
|
||||||
python_version: "3.12"
|
|
||||||
cibw_python_version: 312
|
|
||||||
platform_id: manylinux_x86_64
|
|
||||||
manylinux_image: manylinux2014
|
|
||||||
- os: ubuntu-latest
|
|
||||||
python_version: "3.13"
|
|
||||||
cibw_python_version: 313
|
|
||||||
platform_id: manylinux_x86_64
|
|
||||||
manylinux_image: manylinux2014
|
|
||||||
|
|
||||||
# Linux aarch64
|
|
||||||
- os: ubuntu-24.04-arm
|
|
||||||
python_version: "3.10"
|
|
||||||
cibw_python_version: 310
|
|
||||||
platform_id: manylinux_aarch64
|
|
||||||
manylinux_image: manylinux2014
|
|
||||||
- os: ubuntu-24.04-arm
|
|
||||||
python_version: "3.11"
|
|
||||||
cibw_python_version: 311
|
|
||||||
platform_id: manylinux_aarch64
|
|
||||||
manylinux_image: manylinux2014
|
|
||||||
- os: ubuntu-24.04-arm
|
|
||||||
python_version: "3.12"
|
|
||||||
cibw_python_version: 312
|
|
||||||
platform_id: manylinux_aarch64
|
|
||||||
manylinux_image: manylinux2014
|
|
||||||
- os: ubuntu-24.04-arm
|
|
||||||
python_version: "3.13"
|
|
||||||
cibw_python_version: 313
|
|
||||||
platform_id: manylinux_aarch64
|
|
||||||
manylinux_image: manylinux2014
|
|
||||||
|
|
||||||
# MacOS x86_64
|
|
||||||
- os: macos-13
|
|
||||||
python_version: "3.10"
|
|
||||||
cibw_python_version: 310
|
|
||||||
platform_id: macosx_x86_64
|
|
||||||
- os: macos-13
|
|
||||||
python_version: "3.11"
|
|
||||||
cibw_python_version: 311
|
|
||||||
platform_id: macosx_x86_64
|
|
||||||
- os: macos-13
|
|
||||||
python_version: "3.12"
|
|
||||||
cibw_python_version: 312
|
|
||||||
platform_id: macosx_x86_64
|
|
||||||
- os: macos-13
|
|
||||||
python_version: "3.13"
|
|
||||||
cibw_python_version: 313
|
|
||||||
platform_id: macosx_x86_64
|
|
||||||
|
|
||||||
# MacOS arm64
|
|
||||||
- os: macos-14
|
|
||||||
python_version: "3.10"
|
|
||||||
cibw_python_version: 310
|
|
||||||
platform_id: macosx_arm64
|
|
||||||
- os: macos-14
|
|
||||||
python_version: "3.11"
|
|
||||||
cibw_python_version: 311
|
|
||||||
platform_id: macosx_arm64
|
|
||||||
- os: macos-14
|
|
||||||
python_version: "3.12"
|
|
||||||
cibw_python_version: 312
|
|
||||||
platform_id: macosx_arm64
|
|
||||||
- os: macos-14
|
|
||||||
python_version: "3.13"
|
|
||||||
cibw_python_version: 313
|
|
||||||
platform_id: macosx_arm64
|
|
||||||
|
|
||||||
steps:
|
|
||||||
- name: Checkout
|
|
||||||
uses: actions/checkout@v4
|
|
||||||
with:
|
|
||||||
fetch-depth: 0
|
|
||||||
ref: ${{ github.sha }}
|
|
||||||
|
|
||||||
- name: Set up Python ${{ matrix.python_version }}
|
|
||||||
uses: actions/setup-python@v5
|
|
||||||
with:
|
|
||||||
python-version: ${{ matrix.python_version }}
|
|
||||||
|
|
||||||
- name: Install Dependencies
|
|
||||||
run: |
|
|
||||||
python3 -m pip install -r python/dev_requirements.txt
|
|
||||||
if [ "$RUNNER_OS" == "Linux" ]; then
|
|
||||||
sudo apt-get install -y wget libicu-dev python3-pip python3-setuptools libboost-all-dev ninja-build
|
|
||||||
elif [ "$RUNNER_OS" == "macOS" ]; then
|
|
||||||
brew install boost ninja python-setuptools
|
|
||||||
else
|
|
||||||
echo "$RUNNER_OS not supported"
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
# We first build the Python wrapper module on the host machine. This is done because cibuildwheel
|
|
||||||
# expects a setup.py file to be present in the project directory.
|
|
||||||
#
|
|
||||||
# The Python wrapper module is then rebuilt within the cibuildwheel container before building
|
|
||||||
# the wheels to ensure platform compatibility.
|
|
||||||
- name: Run CMake
|
|
||||||
run: |
|
|
||||||
cmake . -B build -DGTSAM_BUILD_PYTHON=1 -DGTSAM_PYTHON_VERSION=${{ matrix.python_version }}
|
|
||||||
|
|
||||||
# If on macOS, we previously installed boost using homebrew for the first build.
|
|
||||||
# We need to uninstall it before building the wheels with cibuildwheel, which will
|
|
||||||
# install boost from source.
|
|
||||||
- name: Uninstall Boost (MacOS)
|
|
||||||
if: runner.os == 'macOS'
|
|
||||||
run: |
|
|
||||||
brew uninstall boost
|
|
||||||
|
|
||||||
- name: Build and test wheels
|
|
||||||
env:
|
|
||||||
# Generate the platform identifier. See https://cibuildwheel.pypa.io/en/stable/options/#build-skip.
|
|
||||||
CIBW_BUILD: cp${{ matrix.cibw_python_version }}-${{ matrix.platform_id }}
|
|
||||||
CIBW_MANYLINUX_X86_64_IMAGE: ${{ matrix.manylinux_image }}
|
|
||||||
CIBW_MANYLINUX_AARCH64_IMAGE: ${{ matrix.manylinux_image }}
|
|
||||||
CIBW_ARCHS: all
|
|
||||||
|
|
||||||
# Set the minimum required MacOS version for the wheels.
|
|
||||||
MACOSX_DEPLOYMENT_TARGET: 10.15
|
|
||||||
|
|
||||||
# Set DYLD_LIBRARY_PATH to REPAIR_LIBRARY_PATH, which is set in cibw_before_all.sh. REPAIR_LIBRARY_PATH
|
|
||||||
# simply appends BOOST_LIBRARYDIR to the path, which is required during during link-time repair.
|
|
||||||
CIBW_REPAIR_WHEEL_COMMAND_MACOS: DYLD_LIBRARY_PATH=$REPAIR_LIBRARY_PATH delocate-wheel --require-archs {delocate_archs} -w {dest_dir} -v {wheel}
|
|
||||||
|
|
||||||
# Use build instead of pip wheel to build the wheels. This is recommended by PyPA.
|
|
||||||
# See https://cibuildwheel.pypa.io/en/stable/options/#build-frontend.
|
|
||||||
CIBW_BUILD_FRONTEND: "build"
|
|
||||||
CIBW_BEFORE_ALL: bash .github/scripts/python_wheels/cibw_before_all.sh ${{ matrix.python_version }} {project}
|
|
||||||
|
|
||||||
CIBW_BUILD_VERBOSITY: 1
|
|
||||||
|
|
||||||
run: bash .github/scripts/python_wheels/build_wheels.sh
|
|
||||||
|
|
||||||
- name: Store artifacts
|
|
||||||
uses: actions/upload-artifact@v4
|
|
||||||
with:
|
|
||||||
name: cibw-wheels-cp${{ matrix.cibw_python_version }}-${{ matrix.platform_id }}
|
|
||||||
path: wheelhouse/*.whl
|
|
||||||
|
|
||||||
upload_all:
|
|
||||||
name: Upload All
|
|
||||||
needs: build_wheels
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
permissions:
|
|
||||||
id-token: write
|
|
||||||
steps:
|
|
||||||
- name: Download Artifacts
|
|
||||||
uses: actions/download-artifact@v4
|
|
||||||
with:
|
|
||||||
path: dist/
|
|
||||||
merge-multiple: true
|
|
||||||
|
|
||||||
- name: Publish to PyPI
|
|
||||||
uses: pypa/gh-action-pypi-publish@release/v1
|
|
||||||
with:
|
|
||||||
verbose: true
|
|
||||||
packages-dir: dist/
|
|
||||||
repository-url: https://test.pypi.org/legacy/
|
|
|
@ -55,9 +55,6 @@ Optional prerequisites - used automatically if findable by CMake:
|
||||||
|
|
||||||
GTSAM 4 introduces several new features, most notably Expressions and a Python toolbox. It also introduces traits, a C++ technique that allows optimizing with non-GTSAM types. That opens the door to retiring geometric types such as Point2 and Point3 to pure Eigen types, which we also do. A significant change which will not trigger a compile error is that zero-initializing of Point2 and Point3 is deprecated, so please be aware that this might render functions using their default constructor incorrect.
|
GTSAM 4 introduces several new features, most notably Expressions and a Python toolbox. It also introduces traits, a C++ technique that allows optimizing with non-GTSAM types. That opens the door to retiring geometric types such as Point2 and Point3 to pure Eigen types, which we also do. A significant change which will not trigger a compile error is that zero-initializing of Point2 and Point3 is deprecated, so please be aware that this might render functions using their default constructor incorrect.
|
||||||
|
|
||||||
There is a flag `GTSAM_ALLOW_DEPRECATED_SINCE_V43` for newly deprecated methods since the 4.3 release, which is on by default, allowing anyone to just pull version 4.3 and compile.
|
|
||||||
|
|
||||||
|
|
||||||
## Wrappers
|
## Wrappers
|
||||||
|
|
||||||
We provide support for [MATLAB](matlab/README.md) and [Python](python/README.md) wrappers for GTSAM. Please refer to the linked documents for more details.
|
We provide support for [MATLAB](matlab/README.md) and [Python](python/README.md) wrappers for GTSAM. Please refer to the linked documents for more details.
|
||||||
|
|
|
@ -6,88 +6,51 @@
|
||||||
# Boost_NO_SYSTEM_PATHS: set to true to keep the find script from ignoring BOOST_ROOT
|
# Boost_NO_SYSTEM_PATHS: set to true to keep the find script from ignoring BOOST_ROOT
|
||||||
|
|
||||||
if(MSVC)
|
if(MSVC)
|
||||||
set(Boost_USE_STATIC_LIBS ON)
|
# By default, boost only builds static libraries on windows
|
||||||
|
set(Boost_USE_STATIC_LIBS ON) # only find static libs
|
||||||
|
# If we ever reset above on windows and, ...
|
||||||
|
# If we use Boost shared libs, disable auto linking.
|
||||||
|
# Some libraries, at least Boost Program Options, rely on this to export DLL symbols.
|
||||||
if(NOT Boost_USE_STATIC_LIBS)
|
if(NOT Boost_USE_STATIC_LIBS)
|
||||||
list_append_cache(GTSAM_COMPILE_DEFINITIONS_PUBLIC BOOST_ALL_NO_LIB BOOST_ALL_DYN_LINK)
|
list_append_cache(GTSAM_COMPILE_DEFINITIONS_PUBLIC BOOST_ALL_NO_LIB BOOST_ALL_DYN_LINK)
|
||||||
endif()
|
endif()
|
||||||
if(MSVC_VERSION LESS 1910)
|
# Virtual memory range for PCH exceeded on VS2015
|
||||||
list_append_cache(GTSAM_COMPILE_OPTIONS_PRIVATE -Zm295)
|
if(MSVC_VERSION LESS 1910) # older than VS2017
|
||||||
|
list_append_cache(GTSAM_COMPILE_OPTIONS_PRIVATE -Zm295)
|
||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
# ---- 关键修改:强制使用 FindBoost 模块模式,而不是 CONFIG 模式 ----
|
|
||||||
set(Boost_NO_BOOST_CMAKE ON CACHE BOOL "Use FindBoost module mode" FORCE)
|
|
||||||
|
|
||||||
# 允许多线程库(照旧)
|
# Store these in variables so they are automatically replicated in GTSAMConfig.cmake and such.
|
||||||
set(Boost_USE_MULTITHREADED ON)
|
|
||||||
|
|
||||||
# 最低版本
|
|
||||||
set(BOOST_FIND_MINIMUM_VERSION 1.65)
|
set(BOOST_FIND_MINIMUM_VERSION 1.65)
|
||||||
|
set(BOOST_FIND_MINIMUM_COMPONENTS serialization system filesystem thread program_options date_time timer chrono regex)
|
||||||
|
|
||||||
# ---- 关键修改:按版本决定是否需要 system 组件 ----
|
find_package(Boost ${BOOST_FIND_MINIMUM_VERSION} COMPONENTS ${BOOST_FIND_MINIMUM_COMPONENTS} REQUIRED)
|
||||||
set(BOOST_FIND_MINIMUM_COMPONENTS
|
|
||||||
serialization filesystem thread program_options date_time timer chrono regex
|
|
||||||
)
|
|
||||||
|
|
||||||
# 只有旧版 Boost (< 1.69) 需要 system;>=1.69 为 header-only,不再要求
|
# Required components
|
||||||
# 注意:Boost_VERSION 是 find_package 之后才有的,这里用一个预探测逻辑:
|
if(NOT Boost_SERIALIZATION_LIBRARY OR NOT Boost_SYSTEM_LIBRARY OR NOT Boost_FILESYSTEM_LIBRARY OR
|
||||||
# 先尝试不带 system;失败再带上 system 尝试一次(兼容极老环境)。
|
NOT Boost_THREAD_LIBRARY OR NOT Boost_DATE_TIME_LIBRARY)
|
||||||
# 也可以用工具链变量提前注入 Boost_VERSION,这里采用两段式最稳妥。
|
message(FATAL_ERROR "Missing required Boost components >= v1.65, please install/upgrade Boost or configure your search paths.")
|
||||||
|
|
||||||
# 第一次尝试:不含 system(适配 Boost>=1.69)
|
|
||||||
message(STATUS "Trying Boost without 'system' component first (>=1.69 header-only)...")
|
|
||||||
set(_boost_try_components ${BOOST_FIND_MINIMUM_COMPONENTS})
|
|
||||||
set(_boost_found FALSE)
|
|
||||||
find_package(Boost ${BOOST_FIND_MINIMUM_VERSION} COMPONENTS ${_boost_try_components} QUIET)
|
|
||||||
if(Boost_FOUND)
|
|
||||||
set(_boost_found TRUE)
|
|
||||||
else()
|
|
||||||
# 第二次尝试:加入 system(兼容 Boost<1.69)
|
|
||||||
message(STATUS "Retrying Boost with 'system' component for older Boost (<1.69)...")
|
|
||||||
list(APPEND _boost_try_components system)
|
|
||||||
find_package(Boost ${BOOST_FIND_MINIMUM_VERSION} COMPONENTS ${_boost_try_components} REQUIRED)
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
# 记录最终组件集合
|
|
||||||
set(BOOST_FIND_MINIMUM_COMPONENTS ${_boost_try_components})
|
|
||||||
|
|
||||||
# ---- 必要组件检查(按最终集合判断),不要无条件检查 Boost_SYSTEM_LIBRARY ----
|
|
||||||
set(_missing_required FALSE)
|
|
||||||
foreach(_comp IN LISTS BOOST_FIND_MINIMUM_COMPONENTS)
|
|
||||||
string(TOUPPER "${_comp}" _COMP_UP)
|
|
||||||
if(NOT DEFINED "Boost_${_COMP_UP}_LIBRARY" AND NOT TARGET "Boost::${_comp}")
|
|
||||||
# 某些组件(如 header-only)可能没有 *_LIBRARY 变量,但会有导入目标或仅头文件
|
|
||||||
# 对 header-only 的 system(>=1.69)这里不会要求
|
|
||||||
message(STATUS "Note: Boost component '${_comp}' has no explicit *_LIBRARY var; relying on imported target or headers.")
|
|
||||||
endif()
|
|
||||||
endforeach()
|
|
||||||
|
|
||||||
# ---- 计时接口选择,与原逻辑一致 ----
|
|
||||||
option(GTSAM_DISABLE_NEW_TIMERS "Disables using Boost.chrono for timing" OFF)
|
option(GTSAM_DISABLE_NEW_TIMERS "Disables using Boost.chrono for timing" OFF)
|
||||||
|
# Allow for not using the timer libraries on boost < 1.48 (GTSAM timing code falls back to old timer library)
|
||||||
# ---- 链接库列表(不再无条件包含 Boost::system)----
|
|
||||||
set(GTSAM_BOOST_LIBRARIES
|
set(GTSAM_BOOST_LIBRARIES
|
||||||
Boost::serialization
|
Boost::serialization
|
||||||
Boost::filesystem
|
Boost::system
|
||||||
Boost::thread
|
Boost::filesystem
|
||||||
Boost::date_time
|
Boost::thread
|
||||||
Boost::regex
|
Boost::date_time
|
||||||
|
Boost::regex
|
||||||
)
|
)
|
||||||
|
|
||||||
# 如果最终组件包含 chrono/timer,则追加
|
|
||||||
if(TARGET Boost::chrono)
|
|
||||||
list(APPEND GTSAM_BOOST_LIBRARIES Boost::chrono)
|
|
||||||
endif()
|
|
||||||
if(TARGET Boost::timer)
|
|
||||||
list(APPEND GTSAM_BOOST_LIBRARIES Boost::timer)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
# 仅当真的找了 system(即老版本 Boost)时才链接 Boost::system
|
|
||||||
if("system" IN_LIST BOOST_FIND_MINIMUM_COMPONENTS AND TARGET Boost::system)
|
|
||||||
list(APPEND GTSAM_BOOST_LIBRARIES Boost::system)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if (GTSAM_DISABLE_NEW_TIMERS)
|
if (GTSAM_DISABLE_NEW_TIMERS)
|
||||||
message("WARNING: GTSAM timing instrumentation manually disabled")
|
message("WARNING: GTSAM timing instrumentation manually disabled")
|
||||||
list_append_cache(GTSAM_COMPILE_DEFINITIONS_PUBLIC DGTSAM_DISABLE_NEW_TIMERS)
|
list_append_cache(GTSAM_COMPILE_DEFINITIONS_PUBLIC DGTSAM_DISABLE_NEW_TIMERS)
|
||||||
|
else()
|
||||||
|
if(Boost_TIMER_LIBRARY)
|
||||||
|
list(APPEND GTSAM_BOOST_LIBRARIES Boost::timer Boost::chrono)
|
||||||
|
else()
|
||||||
|
list(APPEND GTSAM_BOOST_LIBRARIES rt) # When using the header-only boost timer library, need -lrt
|
||||||
|
message("WARNING: GTSAM timing instrumentation will use the older, less accurate, Boost timer library because boost older than 1.48 was found.")
|
||||||
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
|
@ -1,17 +1,10 @@
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <gtsam/dllexport.h>
|
|
||||||
|
|
||||||
#include <iostream>
|
|
||||||
#include <random>
|
|
||||||
#include <sstream>
|
|
||||||
#include <string>
|
#include <string>
|
||||||
|
#include <iostream>
|
||||||
|
#include <sstream>
|
||||||
|
|
||||||
/**
|
#include <gtsam/dllexport.h>
|
||||||
* @brief Global default pseudo-random number generator object.
|
|
||||||
* In wrappers we can access std::mt19937_64 via gtsam.MT19937
|
|
||||||
*/
|
|
||||||
static std::mt19937_64 kRandomNumberGenerator(42);
|
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
/**
|
/**
|
||||||
|
@ -35,7 +28,7 @@ private:
|
||||||
std::streambuf* coutBuffer_;
|
std::streambuf* coutBuffer_;
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace gtsam
|
}
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
// Adapted from https://stackoverflow.com/a/32223343/9151520
|
// Adapted from https://stackoverflow.com/a/32223343/9151520
|
||||||
|
|
|
@ -18,7 +18,6 @@
|
||||||
|
|
||||||
#include <gtsam/base/Testable.h>
|
#include <gtsam/base/Testable.h>
|
||||||
#include <gtsam/base/debug.h>
|
#include <gtsam/base/debug.h>
|
||||||
#include <gtsam/base/utilities.h>
|
|
||||||
#include <gtsam/discrete/DiscreteConditional.h>
|
#include <gtsam/discrete/DiscreteConditional.h>
|
||||||
#include <gtsam/discrete/Ring.h>
|
#include <gtsam/discrete/Ring.h>
|
||||||
#include <gtsam/discrete/Signature.h>
|
#include <gtsam/discrete/Signature.h>
|
||||||
|
|
|
@ -27,6 +27,9 @@
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
|
// In wrappers we can access std::mt19937_64 via gtsam.MT19937
|
||||||
|
static std::mt19937_64 kRandomNumberGenerator(42);
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|
|
@ -127,9 +127,6 @@ class GTSAM_EXPORT DiscreteFactorGraph
|
||||||
template <class DERIVED_FACTOR>
|
template <class DERIVED_FACTOR>
|
||||||
DiscreteFactorGraph(const FactorGraph<DERIVED_FACTOR>& graph) : Base(graph) {}
|
DiscreteFactorGraph(const FactorGraph<DERIVED_FACTOR>& graph) : Base(graph) {}
|
||||||
|
|
||||||
/// Destructor
|
|
||||||
virtual ~DiscreteFactorGraph() {}
|
|
||||||
|
|
||||||
/// @name Testable
|
/// @name Testable
|
||||||
/// @{
|
/// @{
|
||||||
|
|
||||||
|
|
|
@ -17,7 +17,6 @@
|
||||||
|
|
||||||
#include <gtsam/base/Testable.h>
|
#include <gtsam/base/Testable.h>
|
||||||
#include <gtsam/base/debug.h>
|
#include <gtsam/base/debug.h>
|
||||||
#include <gtsam/base/utilities.h>
|
|
||||||
#include <gtsam/discrete/Ring.h>
|
#include <gtsam/discrete/Ring.h>
|
||||||
#include <gtsam/discrete/Signature.h>
|
#include <gtsam/discrete/Signature.h>
|
||||||
#include <gtsam/discrete/TableDistribution.h>
|
#include <gtsam/discrete/TableDistribution.h>
|
||||||
|
|
|
@ -202,6 +202,16 @@ HybridValues HybridBayesNet::sample(std::mt19937_64 *rng) const {
|
||||||
return sample(given, rng);
|
return sample(given, rng);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
HybridValues HybridBayesNet::sample(const HybridValues &given) const {
|
||||||
|
return sample(given, &kRandomNumberGenerator);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
HybridValues HybridBayesNet::sample() const {
|
||||||
|
return sample(&kRandomNumberGenerator);
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
AlgebraicDecisionTree<Key> HybridBayesNet::errorTree(
|
AlgebraicDecisionTree<Key> HybridBayesNet::errorTree(
|
||||||
const VectorValues &continuousValues) const {
|
const VectorValues &continuousValues) const {
|
||||||
|
|
|
@ -181,11 +181,10 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
||||||
* auto sample = bn.sample(given, &rng);
|
* auto sample = bn.sample(given, &rng);
|
||||||
*
|
*
|
||||||
* @param given Values of missing variables.
|
* @param given Values of missing variables.
|
||||||
* @param rng The optional pseudo-random number generator.
|
* @param rng The pseudo-random number generator.
|
||||||
* @return HybridValues
|
* @return HybridValues
|
||||||
*/
|
*/
|
||||||
HybridValues sample(const HybridValues &given,
|
HybridValues sample(const HybridValues &given, std::mt19937_64 *rng) const;
|
||||||
std::mt19937_64 *rng = nullptr) const;
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Sample using ancestral sampling.
|
* @brief Sample using ancestral sampling.
|
||||||
|
@ -194,10 +193,25 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
||||||
* std::mt19937_64 rng(42);
|
* std::mt19937_64 rng(42);
|
||||||
* auto sample = bn.sample(&rng);
|
* auto sample = bn.sample(&rng);
|
||||||
*
|
*
|
||||||
* @param rng The optional pseudo-random number generator.
|
* @param rng The pseudo-random number generator.
|
||||||
* @return HybridValues
|
* @return HybridValues
|
||||||
*/
|
*/
|
||||||
HybridValues sample(std::mt19937_64 *rng = nullptr) const;
|
HybridValues sample(std::mt19937_64 *rng) const;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Sample from an incomplete BayesNet, use default rng.
|
||||||
|
*
|
||||||
|
* @param given Values of missing variables.
|
||||||
|
* @return HybridValues
|
||||||
|
*/
|
||||||
|
HybridValues sample(const HybridValues &given) const;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Sample using ancestral sampling, use default rng.
|
||||||
|
*
|
||||||
|
* @return HybridValues
|
||||||
|
*/
|
||||||
|
HybridValues sample() const;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Prune the Bayes Net such that we have at most maxNrLeaves leaves.
|
* @brief Prune the Bayes Net such that we have at most maxNrLeaves leaves.
|
||||||
|
|
|
@ -158,8 +158,10 @@ class HybridBayesNet {
|
||||||
gtsam::HybridValues optimize() const;
|
gtsam::HybridValues optimize() const;
|
||||||
gtsam::VectorValues optimize(const gtsam::DiscreteValues& assignment) const;
|
gtsam::VectorValues optimize(const gtsam::DiscreteValues& assignment) const;
|
||||||
|
|
||||||
gtsam::HybridValues sample(const gtsam::HybridValues& given, std::mt19937_64@ rng = nullptr) const;
|
gtsam::HybridValues sample(const gtsam::HybridValues& given, std::mt19937_64@ rng) const;
|
||||||
gtsam::HybridValues sample(std::mt19937_64@ rng = nullptr) const;
|
gtsam::HybridValues sample(std::mt19937_64@ rng) const;
|
||||||
|
gtsam::HybridValues sample(const gtsam::HybridValues& given) const;
|
||||||
|
gtsam::HybridValues sample() const;
|
||||||
|
|
||||||
void print(string s = "HybridBayesNet\n",
|
void print(string s = "HybridBayesNet\n",
|
||||||
const gtsam::KeyFormatter& keyFormatter =
|
const gtsam::KeyFormatter& keyFormatter =
|
||||||
|
|
|
@ -28,7 +28,6 @@ namespace gtsam {
|
||||||
|
|
||||||
/// Assign default key formatter
|
/// Assign default key formatter
|
||||||
KeyFormatter DefaultKeyFormatter = &_defaultKeyFormatter;
|
KeyFormatter DefaultKeyFormatter = &_defaultKeyFormatter;
|
||||||
KeyFormatter MultiRobotKeyFormatter = &_multirobotKeyFormatter;
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
string _defaultKeyFormatter(Key key) {
|
string _defaultKeyFormatter(Key key) {
|
||||||
|
|
|
@ -57,7 +57,8 @@ GTSAM_EXPORT std::string _multirobotKeyFormatter(gtsam::Key key);
|
||||||
/// formatter in print functions.
|
/// formatter in print functions.
|
||||||
///
|
///
|
||||||
/// Checks for LabeledSymbol, Symbol and then plain keys, in order.
|
/// Checks for LabeledSymbol, Symbol and then plain keys, in order.
|
||||||
extern GTSAM_EXPORT KeyFormatter MultiRobotKeyFormatter;
|
static const gtsam::KeyFormatter MultiRobotKeyFormatter =
|
||||||
|
&_multirobotKeyFormatter;
|
||||||
|
|
||||||
/// To use the key_formatter on Keys, they must be wrapped in a StreamedKey.
|
/// To use the key_formatter on Keys, they must be wrapped in a StreamedKey.
|
||||||
struct StreamedKey {
|
struct StreamedKey {
|
||||||
|
|
|
@ -26,6 +26,9 @@
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
|
|
||||||
|
// In Wrappers we have no access to this so have a default ready
|
||||||
|
static std::mt19937_64 kRandomNumberGenerator(42);
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
// Instantiate base class
|
// Instantiate base class
|
||||||
|
@ -73,6 +76,15 @@ namespace gtsam {
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************ */
|
||||||
|
VectorValues GaussianBayesNet::sample() const {
|
||||||
|
return sample(&kRandomNumberGenerator);
|
||||||
|
}
|
||||||
|
|
||||||
|
VectorValues GaussianBayesNet::sample(const VectorValues& given) const {
|
||||||
|
return sample(given, &kRandomNumberGenerator);
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************ */
|
/* ************************************************************************ */
|
||||||
VectorValues GaussianBayesNet::optimizeGradientSearch() const
|
VectorValues GaussianBayesNet::optimizeGradientSearch() const
|
||||||
{
|
{
|
||||||
|
|
|
@ -131,7 +131,7 @@ namespace gtsam {
|
||||||
* std::mt19937_64 rng(42);
|
* std::mt19937_64 rng(42);
|
||||||
* auto sample = gbn.sample(&rng);
|
* auto sample = gbn.sample(&rng);
|
||||||
*/
|
*/
|
||||||
VectorValues sample(std::mt19937_64* rng = nullptr) const;
|
VectorValues sample(std::mt19937_64* rng) const;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Sample from an incomplete BayesNet, given missing variables
|
* Sample from an incomplete BayesNet, given missing variables
|
||||||
|
@ -140,7 +140,13 @@ namespace gtsam {
|
||||||
* VectorValues given = ...;
|
* VectorValues given = ...;
|
||||||
* auto sample = gbn.sample(given, &rng);
|
* auto sample = gbn.sample(given, &rng);
|
||||||
*/
|
*/
|
||||||
VectorValues sample(const VectorValues& given, std::mt19937_64* rng = nullptr) const;
|
VectorValues sample(const VectorValues& given, std::mt19937_64* rng) const;
|
||||||
|
|
||||||
|
/// Sample using ancestral sampling, use default rng
|
||||||
|
VectorValues sample() const;
|
||||||
|
|
||||||
|
/// Sample from an incomplete BayesNet, use default rng
|
||||||
|
VectorValues sample(const VectorValues& given) const;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Return ordering corresponding to a topological sort.
|
* Return ordering corresponding to a topological sort.
|
||||||
|
|
|
@ -15,12 +15,11 @@
|
||||||
* @author Christian Potthast, Frank Dellaert
|
* @author Christian Potthast, Frank Dellaert
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <gtsam/base/utilities.h>
|
|
||||||
#include <gtsam/hybrid/HybridValues.h>
|
|
||||||
#include <gtsam/linear/GaussianConditional.h>
|
#include <gtsam/linear/GaussianConditional.h>
|
||||||
#include <gtsam/linear/Sampler.h>
|
#include <gtsam/linear/Sampler.h>
|
||||||
#include <gtsam/linear/VectorValues.h>
|
#include <gtsam/linear/VectorValues.h>
|
||||||
#include <gtsam/linear/linearExceptions.h>
|
#include <gtsam/linear/linearExceptions.h>
|
||||||
|
#include <gtsam/hybrid/HybridValues.h>
|
||||||
|
|
||||||
#ifdef __GNUC__
|
#ifdef __GNUC__
|
||||||
#pragma GCC diagnostic push
|
#pragma GCC diagnostic push
|
||||||
|
@ -35,6 +34,9 @@
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
|
|
||||||
|
// In wrappers we can access std::mt19937_64 via gtsam.MT19937
|
||||||
|
static std::mt19937_64 kRandomNumberGenerator(42);
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
@ -345,10 +347,6 @@ namespace gtsam {
|
||||||
|
|
||||||
VectorValues solution = solve(parentsValues);
|
VectorValues solution = solve(parentsValues);
|
||||||
Key key = firstFrontalKey();
|
Key key = firstFrontalKey();
|
||||||
|
|
||||||
// Check if rng is nullptr, then assign default
|
|
||||||
rng = (rng == nullptr) ? &kRandomNumberGenerator : rng;
|
|
||||||
|
|
||||||
// The vector of sigma values for sampling.
|
// The vector of sigma values for sampling.
|
||||||
// If no model, initialize sigmas to 1, else to model sigmas
|
// If no model, initialize sigmas to 1, else to model sigmas
|
||||||
const Vector& sigmas = (!model_) ? Vector::Ones(rows()) : model_->sigmas();
|
const Vector& sigmas = (!model_) ? Vector::Ones(rows()) : model_->sigmas();
|
||||||
|
@ -361,7 +359,16 @@ namespace gtsam {
|
||||||
throw std::invalid_argument(
|
throw std::invalid_argument(
|
||||||
"sample() can only be invoked on no-parent prior");
|
"sample() can only be invoked on no-parent prior");
|
||||||
VectorValues values;
|
VectorValues values;
|
||||||
return sample(values, rng);
|
return sample(values);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************ */
|
||||||
|
VectorValues GaussianConditional::sample() const {
|
||||||
|
return sample(&kRandomNumberGenerator);
|
||||||
|
}
|
||||||
|
|
||||||
|
VectorValues GaussianConditional::sample(const VectorValues& given) const {
|
||||||
|
return sample(given, &kRandomNumberGenerator);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************ */
|
/* ************************************************************************ */
|
||||||
|
|
|
@ -217,7 +217,7 @@ namespace gtsam {
|
||||||
* std::mt19937_64 rng(42);
|
* std::mt19937_64 rng(42);
|
||||||
* auto sample = gc.sample(&rng);
|
* auto sample = gc.sample(&rng);
|
||||||
*/
|
*/
|
||||||
VectorValues sample(std::mt19937_64* rng = nullptr) const;
|
VectorValues sample(std::mt19937_64* rng) const;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Sample from conditional, given missing variables
|
* Sample from conditional, given missing variables
|
||||||
|
@ -227,7 +227,13 @@ namespace gtsam {
|
||||||
* auto sample = gc.sample(given, &rng);
|
* auto sample = gc.sample(given, &rng);
|
||||||
*/
|
*/
|
||||||
VectorValues sample(const VectorValues& parentsValues,
|
VectorValues sample(const VectorValues& parentsValues,
|
||||||
std::mt19937_64* rng = nullptr) const;
|
std::mt19937_64* rng) const;
|
||||||
|
|
||||||
|
/// Sample, use default rng
|
||||||
|
VectorValues sample() const;
|
||||||
|
|
||||||
|
/// Sample with given values, use default rng
|
||||||
|
VectorValues sample(const VectorValues& parentsValues) const;
|
||||||
|
|
||||||
/// @}
|
/// @}
|
||||||
/// @name Linear algebra.
|
/// @name Linear algebra.
|
||||||
|
|
|
@ -560,9 +560,10 @@ virtual class GaussianConditional : gtsam::JacobianFactor {
|
||||||
const gtsam::VectorValues& frontalValues) const;
|
const gtsam::VectorValues& frontalValues) const;
|
||||||
gtsam::JacobianFactor* likelihood(gtsam::Vector frontal) const;
|
gtsam::JacobianFactor* likelihood(gtsam::Vector frontal) const;
|
||||||
|
|
||||||
gtsam::VectorValues sample(std::mt19937_64 @rng = nullptr) const;
|
gtsam::VectorValues sample(std::mt19937_64@ rng) const;
|
||||||
gtsam::VectorValues sample(const gtsam::VectorValues& parents,
|
gtsam::VectorValues sample(const gtsam::VectorValues& parents, std::mt19937_64@ rng) const;
|
||||||
std::mt19937_64 @rng = nullptr) const;
|
gtsam::VectorValues sample() const;
|
||||||
|
gtsam::VectorValues sample(const gtsam::VectorValues& parents) const;
|
||||||
|
|
||||||
// Advanced Interface
|
// Advanced Interface
|
||||||
gtsam::VectorValues solveOtherRHS(const gtsam::VectorValues& parents,
|
gtsam::VectorValues solveOtherRHS(const gtsam::VectorValues& parents,
|
||||||
|
@ -628,10 +629,9 @@ virtual class GaussianBayesNet {
|
||||||
gtsam::VectorValues optimize() const;
|
gtsam::VectorValues optimize() const;
|
||||||
gtsam::VectorValues optimize(const gtsam::VectorValues& given) const;
|
gtsam::VectorValues optimize(const gtsam::VectorValues& given) const;
|
||||||
gtsam::VectorValues optimizeGradientSearch() const;
|
gtsam::VectorValues optimizeGradientSearch() const;
|
||||||
|
|
||||||
gtsam::VectorValues sample(const gtsam::VectorValues& given,
|
gtsam::VectorValues sample(const gtsam::VectorValues& given) const;
|
||||||
std::mt19937_64 @rng = nullptr) const;
|
gtsam::VectorValues sample() const;
|
||||||
gtsam::VectorValues sample(std::mt19937_64 @rng = nullptr) const;
|
|
||||||
gtsam::VectorValues backSubstitute(const gtsam::VectorValues& gx) const;
|
gtsam::VectorValues backSubstitute(const gtsam::VectorValues& gx) const;
|
||||||
gtsam::VectorValues backSubstituteTranspose(const gtsam::VectorValues& gx) const;
|
gtsam::VectorValues backSubstituteTranspose(const gtsam::VectorValues& gx) const;
|
||||||
|
|
||||||
|
|
|
@ -441,7 +441,7 @@ TEST(GaussianConditional, likelihood) {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
// Test sampling
|
// Test sampling
|
||||||
TEST(GaussianConditional, Sample) {
|
TEST(GaussianConditional, sample) {
|
||||||
Matrix A1 = (Matrix(2, 2) << 1., 2., 3., 4.).finished();
|
Matrix A1 = (Matrix(2, 2) << 1., 2., 3., 4.).finished();
|
||||||
const Vector2 b(20, 40), x1(3, 4);
|
const Vector2 b(20, 40), x1(3, 4);
|
||||||
const double sigma = 0.01;
|
const double sigma = 0.01;
|
||||||
|
@ -465,10 +465,8 @@ TEST(GaussianConditional, Sample) {
|
||||||
auto actual3 = conditional.sample(given, &rng);
|
auto actual3 = conditional.sample(given, &rng);
|
||||||
EXPECT_LONGS_EQUAL(1, actual2.size());
|
EXPECT_LONGS_EQUAL(1, actual2.size());
|
||||||
// regressions
|
// regressions
|
||||||
#if __APPLE__
|
#if __APPLE__ || _WIN32
|
||||||
EXPECT(assert_equal(Vector2(31.0111856, 64.9850775), actual2[X(0)], 1e-5));
|
EXPECT(assert_equal(Vector2(31.0111856, 64.9850775), actual2[X(0)], 1e-5));
|
||||||
#elif _WIN32
|
|
||||||
EXPECT(assert_equal(Vector2(30.995317, 64.9943165), actual2[X(0)], 1e-5));
|
|
||||||
#elif __linux__
|
#elif __linux__
|
||||||
EXPECT(assert_equal(Vector2(30.9809331, 64.9927588), actual2[X(0)], 1e-5));
|
EXPECT(assert_equal(Vector2(30.9809331, 64.9927588), actual2[X(0)], 1e-5));
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -27,6 +27,8 @@
|
||||||
#include <utility>
|
#include <utility>
|
||||||
#include <gtsam/nonlinear/Values.h>
|
#include <gtsam/nonlinear/Values.h>
|
||||||
|
|
||||||
|
#include <gtsam/nonlinear/Values.h> // Only so Eclipse finds class definition
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -81,12 +81,13 @@ struct GTSAM_EXPORT SfmTrack2d {
|
||||||
* @returns boolean result of the validation.
|
* @returns boolean result of the validation.
|
||||||
*/
|
*/
|
||||||
bool hasUniqueCameras() const {
|
bool hasUniqueCameras() const {
|
||||||
std::vector<size_t> cameraIndices;
|
std::vector<int> track_cam_indices;
|
||||||
for (auto& measurement : measurements) {
|
for (auto& measurement : measurements) {
|
||||||
cameraIndices.emplace_back(measurement.first);
|
track_cam_indices.emplace_back(measurement.first);
|
||||||
}
|
}
|
||||||
auto i = std::adjacent_find(cameraIndices.begin(), cameraIndices.end());
|
auto i =
|
||||||
bool all_cameras_unique = (i == cameraIndices.end());
|
std::adjacent_find(track_cam_indices.begin(), track_cam_indices.end());
|
||||||
|
bool all_cameras_unique = (i == track_cam_indices.end());
|
||||||
return all_cameras_unique;
|
return all_cameras_unique;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -42,7 +42,7 @@
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
// In Wrappers we have no access to this so have a default ready
|
// In Wrappers we have no access to this so have a default ready
|
||||||
static std::mt19937 kPRNG(42);
|
static std::mt19937 kRandomNumberGenerator(42);
|
||||||
|
|
||||||
using Sparse = Eigen::SparseMatrix<double>;
|
using Sparse = Eigen::SparseMatrix<double>;
|
||||||
|
|
||||||
|
@ -869,7 +869,7 @@ Values ShonanAveraging<d>::initializeRandomly(std::mt19937 &rng) const {
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
template <size_t d>
|
template <size_t d>
|
||||||
Values ShonanAveraging<d>::initializeRandomly() const {
|
Values ShonanAveraging<d>::initializeRandomly() const {
|
||||||
return initializeRandomly(kPRNG);
|
return initializeRandomly(kRandomNumberGenerator);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
@ -883,7 +883,7 @@ Values ShonanAveraging<d>::initializeRandomlyAt(size_t p,
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
template <size_t d>
|
template <size_t d>
|
||||||
Values ShonanAveraging<d>::initializeRandomlyAt(size_t p) const {
|
Values ShonanAveraging<d>::initializeRandomlyAt(size_t p) const {
|
||||||
return initializeRandomlyAt(p, kPRNG);
|
return initializeRandomlyAt(p, kRandomNumberGenerator);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
|
@ -39,7 +39,7 @@ using namespace gtsam;
|
||||||
using namespace std;
|
using namespace std;
|
||||||
|
|
||||||
// In Wrappers we have no access to this so have a default ready.
|
// In Wrappers we have no access to this so have a default ready.
|
||||||
static std::mt19937 kPRNG(42);
|
static std::mt19937 kRandomNumberGenerator(42);
|
||||||
|
|
||||||
// Some relative translations may be zero. We treat nodes that have a zero
|
// Some relative translations may be zero. We treat nodes that have a zero
|
||||||
// relativeTranslation as a single node.
|
// relativeTranslation as a single node.
|
||||||
|
@ -185,7 +185,7 @@ Values TranslationRecovery::initializeRandomly(
|
||||||
const std::vector<BinaryMeasurement<Point3>> &betweenTranslations,
|
const std::vector<BinaryMeasurement<Point3>> &betweenTranslations,
|
||||||
const Values &initialValues) const {
|
const Values &initialValues) const {
|
||||||
return initializeRandomly(relativeTranslations, betweenTranslations,
|
return initializeRandomly(relativeTranslations, betweenTranslations,
|
||||||
&kPRNG, initialValues);
|
&kRandomNumberGenerator, initialValues);
|
||||||
}
|
}
|
||||||
|
|
||||||
Values TranslationRecovery::run(
|
Values TranslationRecovery::run(
|
||||||
|
|
|
@ -45,7 +45,7 @@ ShonanAveraging3 fromExampleName(
|
||||||
|
|
||||||
static const ShonanAveraging3 kShonan = fromExampleName("toyExample.g2o");
|
static const ShonanAveraging3 kShonan = fromExampleName("toyExample.g2o");
|
||||||
|
|
||||||
static std::mt19937 kPRNG(42);
|
static std::mt19937 kRandomNumberGenerator(42);
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(ShonanAveraging3, checkConstructor) {
|
TEST(ShonanAveraging3, checkConstructor) {
|
||||||
|
@ -78,7 +78,7 @@ TEST(ShonanAveraging3, buildGraphAt) {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(ShonanAveraging3, checkOptimality) {
|
TEST(ShonanAveraging3, checkOptimality) {
|
||||||
const Values randomRotations = kShonan.initializeRandomly(kPRNG);
|
const Values randomRotations = kShonan.initializeRandomly(kRandomNumberGenerator);
|
||||||
Values random = ShonanAveraging3::LiftTo<Rot3>(4, randomRotations); // lift to 4!
|
Values random = ShonanAveraging3::LiftTo<Rot3>(4, randomRotations); // lift to 4!
|
||||||
auto Lambda = kShonan.computeLambda(random);
|
auto Lambda = kShonan.computeLambda(random);
|
||||||
EXPECT_LONGS_EQUAL(15, Lambda.rows());
|
EXPECT_LONGS_EQUAL(15, Lambda.rows());
|
||||||
|
@ -106,7 +106,7 @@ TEST(ShonanAveraging3, checkSubgraph) {
|
||||||
|
|
||||||
// Create initial random estimation
|
// Create initial random estimation
|
||||||
Values initial;
|
Values initial;
|
||||||
initial = subgraphShonan.initializeRandomly(kPRNG);
|
initial = subgraphShonan.initializeRandomly(kRandomNumberGenerator);
|
||||||
|
|
||||||
// Run Shonan with SUBGRAPH solver
|
// Run Shonan with SUBGRAPH solver
|
||||||
auto result = subgraphShonan.run(initial, 3, 3);
|
auto result = subgraphShonan.run(initial, 3, 3);
|
||||||
|
@ -115,7 +115,7 @@ TEST(ShonanAveraging3, checkSubgraph) {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(ShonanAveraging3, tryOptimizingAt3) {
|
TEST(ShonanAveraging3, tryOptimizingAt3) {
|
||||||
const Values randomRotations = kShonan.initializeRandomly(kPRNG);
|
const Values randomRotations = kShonan.initializeRandomly(kRandomNumberGenerator);
|
||||||
Values initial = ShonanAveraging3::LiftTo<Rot3>(3, randomRotations); // convert to SOn
|
Values initial = ShonanAveraging3::LiftTo<Rot3>(3, randomRotations); // convert to SOn
|
||||||
EXPECT(!kShonan.checkOptimality(initial));
|
EXPECT(!kShonan.checkOptimality(initial));
|
||||||
const Values result = kShonan.tryOptimizingAt(3, initial);
|
const Values result = kShonan.tryOptimizingAt(3, initial);
|
||||||
|
@ -130,7 +130,7 @@ TEST(ShonanAveraging3, tryOptimizingAt3) {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(ShonanAveraging3, tryOptimizingAt4) {
|
TEST(ShonanAveraging3, tryOptimizingAt4) {
|
||||||
const Values randomRotations = kShonan.initializeRandomly(kPRNG);
|
const Values randomRotations = kShonan.initializeRandomly(kRandomNumberGenerator);
|
||||||
Values random = ShonanAveraging3::LiftTo<Rot3>(4, randomRotations); // lift to 4!
|
Values random = ShonanAveraging3::LiftTo<Rot3>(4, randomRotations); // lift to 4!
|
||||||
const Values result = kShonan.tryOptimizingAt(4, random);
|
const Values result = kShonan.tryOptimizingAt(4, random);
|
||||||
EXPECT(kShonan.checkOptimality(result));
|
EXPECT(kShonan.checkOptimality(result));
|
||||||
|
@ -228,7 +228,7 @@ TEST(ShonanAveraging3, CheckWithEigen) {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(ShonanAveraging3, initializeWithDescent) {
|
TEST(ShonanAveraging3, initializeWithDescent) {
|
||||||
const Values randomRotations = kShonan.initializeRandomly(kPRNG);
|
const Values randomRotations = kShonan.initializeRandomly(kRandomNumberGenerator);
|
||||||
Values random = ShonanAveraging3::LiftTo<Rot3>(3, randomRotations);
|
Values random = ShonanAveraging3::LiftTo<Rot3>(3, randomRotations);
|
||||||
const Values Qstar3 = kShonan.tryOptimizingAt(3, random);
|
const Values Qstar3 = kShonan.tryOptimizingAt(3, random);
|
||||||
Vector minEigenVector;
|
Vector minEigenVector;
|
||||||
|
@ -240,7 +240,7 @@ TEST(ShonanAveraging3, initializeWithDescent) {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(ShonanAveraging3, run) {
|
TEST(ShonanAveraging3, run) {
|
||||||
auto initial = kShonan.initializeRandomly(kPRNG);
|
auto initial = kShonan.initializeRandomly(kRandomNumberGenerator);
|
||||||
auto result = kShonan.run(initial, 5);
|
auto result = kShonan.run(initial, 5);
|
||||||
EXPECT_DOUBLES_EQUAL(0, kShonan.cost(result.first), 1e-3);
|
EXPECT_DOUBLES_EQUAL(0, kShonan.cost(result.first), 1e-3);
|
||||||
EXPECT_DOUBLES_EQUAL(-5.427688831332745e-07, result.second,
|
EXPECT_DOUBLES_EQUAL(-5.427688831332745e-07, result.second,
|
||||||
|
@ -295,7 +295,7 @@ TEST(ShonanAveraging3, runKlaus) {
|
||||||
EXPECT(assert_equal(R02, wR0.between(wR2), 0.1));
|
EXPECT(assert_equal(R02, wR0.between(wR2), 0.1));
|
||||||
|
|
||||||
// Run Shonan (with prior on first rotation)
|
// Run Shonan (with prior on first rotation)
|
||||||
auto initial = shonan.initializeRandomly(kPRNG);
|
auto initial = shonan.initializeRandomly(kRandomNumberGenerator);
|
||||||
auto result = shonan.run(initial, 5);
|
auto result = shonan.run(initial, 5);
|
||||||
EXPECT_DOUBLES_EQUAL(0, shonan.cost(result.first), 1e-2);
|
EXPECT_DOUBLES_EQUAL(0, shonan.cost(result.first), 1e-2);
|
||||||
EXPECT_DOUBLES_EQUAL(-9.2259161494467889e-05, result.second,
|
EXPECT_DOUBLES_EQUAL(-9.2259161494467889e-05, result.second,
|
||||||
|
@ -323,7 +323,7 @@ TEST(ShonanAveraging3, runKlausKarcher) {
|
||||||
static const ShonanAveraging3 shonan = fromExampleName("Klaus3.g2o");
|
static const ShonanAveraging3 shonan = fromExampleName("Klaus3.g2o");
|
||||||
|
|
||||||
// Run Shonan (with Karcher mean prior)
|
// Run Shonan (with Karcher mean prior)
|
||||||
auto initial = shonan.initializeRandomly(kPRNG);
|
auto initial = shonan.initializeRandomly(kRandomNumberGenerator);
|
||||||
auto result = shonan.run(initial, 5);
|
auto result = shonan.run(initial, 5);
|
||||||
EXPECT_DOUBLES_EQUAL(0, shonan.cost(result.first), 1e-2);
|
EXPECT_DOUBLES_EQUAL(0, shonan.cost(result.first), 1e-2);
|
||||||
EXPECT_DOUBLES_EQUAL(-1.361402670507772e-05, result.second,
|
EXPECT_DOUBLES_EQUAL(-1.361402670507772e-05, result.second,
|
||||||
|
@ -353,7 +353,7 @@ TEST(ShonanAveraging2, noisyToyGraph) {
|
||||||
// Check graph building
|
// Check graph building
|
||||||
NonlinearFactorGraph graph = shonan.buildGraphAt(2);
|
NonlinearFactorGraph graph = shonan.buildGraphAt(2);
|
||||||
EXPECT_LONGS_EQUAL(6, graph.size());
|
EXPECT_LONGS_EQUAL(6, graph.size());
|
||||||
auto initial = shonan.initializeRandomly(kPRNG);
|
auto initial = shonan.initializeRandomly(kRandomNumberGenerator);
|
||||||
auto result = shonan.run(initial, 2);
|
auto result = shonan.run(initial, 2);
|
||||||
EXPECT_DOUBLES_EQUAL(0.0008211, shonan.cost(result.first), 1e-6);
|
EXPECT_DOUBLES_EQUAL(0.0008211, shonan.cost(result.first), 1e-6);
|
||||||
EXPECT_DOUBLES_EQUAL(0, result.second, 1e-10); // certificate!
|
EXPECT_DOUBLES_EQUAL(0, result.second, 1e-10); // certificate!
|
||||||
|
@ -391,7 +391,7 @@ TEST(ShonanAveraging2, noisyToyGraphWithHuber) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// test result
|
// test result
|
||||||
auto initial = shonan.initializeRandomly(kPRNG);
|
auto initial = shonan.initializeRandomly(kRandomNumberGenerator);
|
||||||
auto result = shonan.run(initial, 2,2);
|
auto result = shonan.run(initial, 2,2);
|
||||||
EXPECT_DOUBLES_EQUAL(0.0008211, shonan.cost(result.first), 1e-6);
|
EXPECT_DOUBLES_EQUAL(0.0008211, shonan.cost(result.first), 1e-6);
|
||||||
EXPECT_DOUBLES_EQUAL(0, result.second, 1e-10); // certificate!
|
EXPECT_DOUBLES_EQUAL(0, result.second, 1e-10); // certificate!
|
||||||
|
|
|
@ -23,6 +23,7 @@
|
||||||
|
|
||||||
<buildtool_depend>cmake</buildtool_depend>
|
<buildtool_depend>cmake</buildtool_depend>
|
||||||
|
|
||||||
|
<depend>boost</depend>
|
||||||
<depend>eigen</depend>
|
<depend>eigen</depend>
|
||||||
<depend>tbb</depend>
|
<depend>tbb</depend>
|
||||||
|
|
||||||
|
|
|
@ -10,5 +10,3 @@
|
||||||
* Without this they will be automatically converted to a Python object, and all
|
* Without this they will be automatically converted to a Python object, and all
|
||||||
* mutations on Python side will not be reflected on C++.
|
* mutations on Python side will not be reflected on C++.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <pybind11/stl.h>
|
|
||||||
|
|
Loading…
Reference in New Issue