Added a bunch of Unordered classes, elimination algorithm in progress

release/4.3a0
Richard Roberts 2013-06-06 15:35:58 +00:00
parent a446fa4801
commit ffc55ad026
23 changed files with 2479 additions and 0 deletions

View File

@ -0,0 +1,167 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Conditional.h
* @brief Base class for conditional densities
* @author Frank Dellaert
*/
// \callgraph
#pragma once
#include <boost/range.hpp>
#include <iostream>
#include <gtsam/inference/Key.h>
namespace gtsam {
/**
* Base class for conditional densities, templated on KEY type. This class
* provides storage for the keys involved in a conditional, and iterators and
* access to the frontal and separator keys.
*
* Derived classes *must* redefine the Factor and shared_ptr typedefs to refer
* to the associated factor type and shared_ptr type of the derived class. See
* IndexConditional and GaussianConditional for examples.
* \nosubgrouping
*/
template<class FACTOR>
class ConditionalUnordered {
protected:
/** The first nrFrontal variables are frontal and the rest are parents. */
size_t nrFrontals_;
/** Iterator over keys */
typedef typename FACTOR::iterator iterator;
/** Const iterator over keys */
typedef typename FACTOR::const_iterator const_iterator;
public:
typedef ConditionalUnordered<FACTOR> This;
/** View of the frontal keys (call frontals()) */
typedef boost::iterator_range<const_iterator> Frontals;
/** View of the separator keys (call parents()) */
typedef boost::iterator_range<const_iterator> Parents;
/// @name Standard Constructors
/// @{
/** Empty Constructor to make serialization possible */
ConditionalUnordered() : nrFrontals_(0) {}
/** Constructor */
ConditionalUnordered(size_t nrFrontals) : nrFrontals_(nrFrontals) {}
/// @}
/// @name Testable
/// @{
/** print with optional formatter */
void print(const std::string& s = "Conditional", const KeyFormatter& formatter = DefaultKeyFormatter) const;
/** check equality */
bool equals(const This& c, double tol = 1e-9) const { return nrFrontals_ == c.nrFrontals_; }
/// @}
/// @name Standard Interface
/// @{
/** return the number of frontals */
size_t nrFrontals() const { return nrFrontals_; }
/** return the number of parents */
size_t nrParents() const { return asDerived.size() - nrFrontals_; }
/** Convenience function to get the first frontal key */
Key firstFrontalKey() const {
if(nrFrontals_ > 0)
return asDerived().front();
else
throw std::invalid_argument("Requested Conditional::firstFrontalKey from a conditional with zero frontal keys");
}
/** return a view of the frontal keys */
Frontals frontals() const { return boost::make_iterator_range(beginFrontals(), endFrontals()); }
/** return a view of the parent keys */
Parents parents() const { return boost::make_iterator_range(beginParents(), endParents()); }
/** Iterator pointing to first frontal key. */
const_iterator beginFrontals() const { return asDerived().begin(); }
/** Iterator pointing past the last frontal key. */
const_iterator endFrontals() const { return asDerived().begin() + nrFrontals_; }
/** Iterator pointing to the first parent key. */
const_iterator beginParents() const { return endFrontals(); }
/** Iterator pointing past the last parent key. */
const_iterator endParents() const { return asDerived().end(); }
/// @}
/// @name Advanced Interface
/// @{
/** Mutable iterators and accessors */
iterator beginFrontals() {
return FactorType::begin();
} ///<TODO: comment
iterator endFrontals() {
return FactorType::begin() + nrFrontals_;
} ///<TODO: comment
iterator beginParents() {
return FactorType::begin() + nrFrontals_;
} ///<TODO: comment
iterator endParents() {
return FactorType::end();
} ///<TODO: comment
private:
// Cast to derived type (non-const)
FACTOR& asDerived() { return static_cast<FACTOR&>(*this); }
// Cast to derived type (const)
const FACTOR& asDerived() const { return static_cast<const FACTOR&>(*this); }
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(nrFrontals_);
}
/// @}
};
/* ************************************************************************* */
template<class FACTOR>
void ConditionalUnordered<FACTOR>::print(const std::string& s, const KeyFormatter& formatter) const {
std::cout << s << " P(";
BOOST_FOREACH(Key key, frontals())
std::cout << " " << formatter(key);
if (nrParents() > 0)
std::cout << " |";
BOOST_FOREACH(Key parent, parents())
std::cout << " " << formatter(parent);
std::cout << ")" << std::endl;
}
} // gtsam

View File

@ -0,0 +1,222 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file EliminationTree-inl.h
* @author Frank Dellaert
* @author Richard Roberts
* @date Oct 13, 2010
*/
#pragma once
#include <gtsam/base/timing.h>
#include <gtsam/inference/EliminationTreeUnordered.h>
#include <boost/foreach.hpp>
namespace gtsam {
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
EliminationTreeUnordered<BAYESNET,GRAPH>::EliminationTreeUnordered(const FactorGraphType& graph,
const VariableIndexUnordered& structure, const std::vector<Key>& order)
{
gttic(ET_Create1);
// Number of factors and variables - NOTE in the case of partial elimination, n here may
// be fewer variables than are actually present in the graph.
const size_t m = graph.size();
const size_t n = order.size();
static const size_t none = std::numeric_limits<size_t>::max();
// Allocate result parent vector and vector of last factor columns
std::vector<shared_ptr> nodes(n);
std::vector<size_t> parents(n, none);
std::vector<size_t> prevCol(m, none);
std::vector<bool> factorUsed(m, false);
try {
// for column j \in 1 to n do
for (size_t j = 0; j < n; j++)
{
// Retrieve the factors involving this variable and create the current node
const VariableIndex::Factors& factors = structure[order[j]];
nodes[j] = boost::make_shared<EliminationTreeUnordered<FACTOR> >(order[j]);
// for row i \in Struct[A*j] do
BOOST_FOREACH(const size_t i, factors) {
// If we already hit a variable in this factor, make the subtree containing the previous
// variable in this factor a child of the current node. This means that the variables
// eliminated earlier in the factor depend on the later variables in the factor. If we
// haven't yet hit a variable in this factor, we add the factor to the current node.
// TODO: Store root shortcuts instead of parents.
if (prevCol[i] != none) {
size_t k = prevCol[i];
// Find root r of the current tree that contains k. Use raw pointers in computing the
// parents to avoid changing the reference counts while traversing up the tree.
size_t r = k;
while (parents[r] != none)
r = parents[r];
// If the root of the subtree involving this node is actually the current node,
// TODO: what does this mean? forest?
if (r != j) {
// Now that we found the root, hook up parent and child pointers in the nodes.
parents[r] = j;
nodes[j]->subTrees_.push_back(nodes[r]);
}
} else {
// Add the current factor to the current node since we are at the first variable in this
// factor.
nodes[j]->factors_.push_back(graph[i]);
factorUsed[i] = true;
}
prevCol[i] = j;
}
}
} catch(std::invalid_argument& e) {
// If this is thrown from structure[order[j]] above, it means that it was requested to
// eliminate a variable not present in the graph, so throw a more informative error message.
throw std::invalid_argument("EliminationTree: given ordering contains variables that are not involved in the factor graph");
} catch(...) {
throw;
}
// Find roots
assert(parents.back() == none); // We expect the last-eliminated node to be a root no matter what
for(size_t j = 0; j < n; ++j)
if(parents[j] == none)
roots_.push_back(nodes[j]);
// Gather remaining factors
for(size_t i = 0; i < m; ++i)
if(!factorUsed[i])
remainingFactors_.push_back(graph[i]);
}
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
EliminationTreeUnordered<BAYESNET,GRAPH>::EliminationTreeUnordered(
const FactorGraphType& factorGraph, const std::vector<Key>& order)
{
gttic(ET_Create2);
// Build variable index first
const VariableIndexUnordered variableIndex(factorGraph);
This temp(factorGraph, variableIndex, order);
roots_.swap(temp.roots_); // Swap in the tree, and temp will be deleted
remainingFactors_.swap(temp.remainingFactors_);
}
/* ************************************************************************* */
namespace {
template<class FACTOR>
struct EliminationNode {
bool expanded;
Key key;
std::vector<boost::shared_ptr<FACTOR> > factors;
EliminationNode<FACTOR>* parent;
template<typename ITERATOR> EliminationNode(
Key _key, size_t nFactorsToReserve, ITERATOR firstFactor, ITERATOR lastFactor, EliminationNode<FACTOR>* _parent) :
expanded(false), key(_key), parent(_parent) {
factors.reserve(nFactorsToReserve);
factors.insert(factors.end(), firstFactor, lastFactor);
}
};
}
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
std::pair<boost::shared_ptr<BAYESNET>, boost::shared_ptr<GRAPH> >
EliminationTreeUnordered<BAYESNET,GRAPH>::eliminate(Eliminate function)
{
// Stack for eliminating nodes. We use this stack instead of recursive function calls to
// avoid call stack overflow due to very long trees that arise from chain-like graphs. We use
// an std::vector for storage here since we do not want frequent reallocations and do not care
// about the vector growing to be very large once and not being deallocated until this
// function exits, because in the worst case we only store one pointer in this stack for each
// variable in the system.
typedef EliminationNode<FactorType> EliminationNode;
std::stack<EliminationNode, std::vector<EliminationNode> > eliminationStack;
// Create empty Bayes net and factor graph to hold result
boost::shared_ptr<BayesNetType> bayesNet = boost::make_shared<BayesNetType>();
// Initialize remaining factors with the factors remaining from creation of the
// EliminationTree - these are the factors that were not included in the partial elimination
// at all.
boost::shared_ptr<FactorGraphType> remainingFactors =
boost::make_shared<FactorGraphType>(remainingFactors_);
// Add roots to the stack
BOOST_FOREACH(const sharedNode& root, roots_) {
eliminationStack.push(
EliminationNode(root->key, root->factors.size() + root->subTrees.size(),
root->factors.begin(), root->factors.end(), 0)); }
// Until the stack is empty
while(!eliminationStack.empty()) {
// Process the next node. If it has children, add its children to the stack and skip it -
// we'll come back and eliminate it later after the children have been processed. If it has
// no children, we can eliminate it immediately and remove it from the stack.
EliminationNode& node = nodeStack.top();
if(node.expanded) {
// Remove from stack
nodeStack.pop();
// Do a dense elimination step
std::pair<boost::shared_ptr<ConditionalType>, boost::shared_ptr<FactorType> > eliminationResult =
function(node.factors, node.key);
// Add conditional to BayesNet and remaining factor to parent
bayesNet->push_back(eliminationResult.first);
// TODO: Don't add null factor?
if(node.parent)
node.parent->factors.push_back(eliminationResult.second);
else
remainingFactors->push_back(eliminationResult.second);
} else {
// Expand children and mark as expanded
node.expanded = true;
BOOST_FOREACH(const sharedNode& child, node.subTrees) {
nodeStack.push(
EliminationNode(child->key, child->factors.size() + child->subTrees.size(),
child->factors.begin(), child->factors.end(), 0)); }
}
}
// Return results
return std::make_pair(bayesNet, remainingFactors);
}
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
void EliminationTreeUnordered<BAYESNET,GRAPH>::print(const std::string& name,
const IndexFormatter& formatter) const {
std::cout << name << " (" << formatter(key_) << ")" << std::endl;
BOOST_FOREACH(const sharedFactor& factor, factors_) {
factor->print(name + " ", formatter); }
BOOST_FOREACH(const shared_ptr& child, subTrees_) {
child->print(name + " ", formatter); }
}
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
bool EliminationTreeUnordered<BAYESNET,GRAPH>::equals(const This& expected, double tol) const {
if(this->key_ == expected.key_ && this->factors_ == expected.factors_
&& this->subTrees_.size() == expected.subTrees_.size()) {
typename SubTrees::const_iterator this_subtree = this->subTrees_.begin();
typename SubTrees::const_iterator expected_subtree = expected.subTrees_.begin();
while(this_subtree != this->subTrees_.end())
if( ! (*(this_subtree++))->equals(**(expected_subtree++), tol))
return false;
return true;
} else
return false;
}
}

View File

@ -0,0 +1,27 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file EliminationTree.cpp
* @author Frank Dellaert
* @author Richard Roberts
* @date Oct 13, 2010
*/
#include <gtsam/inference/EliminationTreeUnordered.h>
namespace gtsam {
namespace internal {
}
}

View File

@ -0,0 +1,150 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file EliminationTree.h
* @author Frank Dellaert
* @author Richard Roberts
* @date Oct 13, 2010
*/
#pragma once
#include <utility>
#include <boost/shared_ptr.hpp>
#include <gtsam/base/FastList.h>
#include <gtsam/base/Testable.h>
#include <gtsam/inference/Key.h>
class EliminationTreeTester; // for unit tests, see testEliminationTree
namespace gtsam {
class VariableIndexUnordered;
/**
* An elimination tree is a data structure used intermediately during
* elimination. In future versions it will be used to save work between
* multiple eliminations.
*
* When a variable is eliminated, a new factor is created by combining that
* variable's neighboring factors. The new combined factor involves the combined
* factors' involved variables. When the lowest-ordered one of those variables
* is eliminated, it consumes that combined factor. In the elimination tree,
* that lowest-ordered variable is the parent of the variable that was eliminated to
* produce the combined factor. This yields a tree in general, and not a chain
* because of the implicit sparse structure of the resulting Bayes net.
*
* This structure is examined even more closely in a JunctionTree, which
* additionally identifies cliques in the chordal Bayes net.
* \nosubgrouping
*/
template<class BAYESNET, class GRAPH>
class EliminationTreeUnordered {
public:
typedef GRAPH FactorGraphType; ///< The factor graph type
typedef typename GRAPH::FactorType FactorType; ///< The type of factors
typedef EliminationTreeUnordered<BAYESNET,GRAPH> This; ///< This class
typedef boost::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
typedef typename boost::shared_ptr<FactorType> sharedFactor; ///< Shared pointer to a factor
typedef BAYESNET BayesNetType; ///< The BayesNet corresponding to FACTOR
typedef typename BayesNetType::ConditionalType ConditionalType; ///< The type of conditionals
typedef typename GRAPH::Eliminate Eliminate; ///< Typedef for an eliminate subroutine
class Node {
public:
typedef boost::shared_ptr<Node> shared_ptr;
typedef FastList<sharedFactor> Factors;
typedef FastList<shared_ptr> SubTrees;
Key key; ///< key associated with root
Factors factors; ///< factors associated with root
SubTrees subTrees; ///< sub-trees
};
typedef Node::shared_ptr sharedNode; ///< Shared pointer to Node
private:
/** concept check */
GTSAM_CONCEPT_TESTABLE_TYPE(FactorType);
FastList<sharedNode> roots_;
FactorGraphType remainingFactors_;
public:
/// @name Standard Constructors
/// @{
/**
* Build the elimination tree of a factor graph using pre-computed column structure.
* @param factorGraph The factor graph for which to build the elimination tree
* @param structure The set of factors involving each variable. If this is not
* precomputed, you can call the Create(const FactorGraph<DERIVEDFACTOR>&)
* named constructor instead.
* @return The elimination tree
*/
EliminationTreeUnordered(const FactorGraphType& factorGraph,
const VariableIndexUnordered& structure, const std::vector<Key>& order);
/** Build the elimination tree of a factor graph. Note that this has to compute the column
* structure as a VariableIndex, so if you already have this precomputed, use the other
* constructor instead.
* @param factorGraph The factor graph for which to build the elimination tree
*/
EliminationTreeUnordered(const FactorGraphType& factorGraph, const std::vector<Key>& order);
/** Copy constructor - makes a deep copy of the tree structure, but only pointers to factors are
* copied, factors are not cloned. */
EliminationTreeUnordered(const This& other);
/** Assignment operator - makes a deep copy of the tree structure, but only pointers to factors are
* copied, factors are not cloned. */
This& operator=(const This& other);
/// @}
/// @name Standard Interface
/// @{
/** Eliminate the factors to a Bayes net and remaining factor graph
* @param function The function to use to eliminate, see the namespace functions
* in GaussianFactorGraph.h
* @return The Bayes net and factor graph resulting from elimination
*/
std::pair<boost::shared_ptr<BayesNetType>, boost::shared_ptr<FactorGraphType> >
eliminate(Eliminate function) const;
/// @}
/// @name Testable
/// @{
/** Print the tree to cout */
void print(const std::string& name = "EliminationTree: ",
const KeyFormatter& formatter = DefaultKeyFormatter) const;
/** Test whether the tree is equal to another */
bool equals(const This& other, double tol = 1e-9) const;
/// @}
private:
/// Allow access to constructor and add methods for testing purposes
friend class ::EliminationTreeTester;
};
}
#include <gtsam/inference/EliminationTree-inl.h>

View File

@ -0,0 +1,89 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file FactorGraph-inl.h
* @brief Factor Graph Base Class
* @author Carlos Nieto
* @author Frank Dellaert
* @author Alireza Fathi
* @author Michael Kaess
*/
#pragma once
#include <gtsam/base/FastSet.h>
#include <gtsam/inference/BayesTree.h>
#include <gtsam/inference/VariableIndex.h>
#include <boost/foreach.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/format.hpp>
#include <boost/iterator/transform_iterator.hpp>
#include <stdio.h>
#include <list>
#include <sstream>
#include <stdexcept>
namespace gtsam {
/* ************************************************************************* */
template<class FACTOR>
void FactorGraphUnordered<FACTOR>::print(const std::string& s,
const KeyFormatter& formatter) const {
std::cout << s << std::endl;
std::cout << "size: " << size() << std::endl;
for (size_t i = 0; i < factors_.size(); i++) {
std::stringstream ss;
ss << "factor " << i << ": ";
if (factors_[i] != NULL) factors_[i]->print(ss.str(), formatter);
}
}
/* ************************************************************************* */
template<class FACTOR>
bool FactorGraphUnordered<FACTOR>::equals(const This& fg, double tol) const {
/** check whether the two factor graphs have the same number of factors_ */
if (factors_.size() != fg.size()) return false;
/** check whether the factors_ are the same */
for (size_t i = 0; i < factors_.size(); i++) {
// TODO: Doesn't this force order of factor insertion?
sharedFactor f1 = factors_[i], f2 = fg.factors_[i];
if (f1 == NULL && f2 == NULL) continue;
if (f1 == NULL || f2 == NULL) return false;
if (!f1->equals(*f2, tol)) return false;
}
return true;
}
/* ************************************************************************* */
template<class FACTOR>
size_t FactorGraphUnordered<FACTOR>::nrFactors() const {
size_t size_ = 0;
BOOST_FOREACH(const sharedFactor& factor, factors_)
if (factor) size_++;
return size_;
}
/* ************************************************************************* */
template<class FACTOR>
FastSet<Key> FactorGraphUnordered<FACTOR>::keys() const {
FastSet<Key> allKeys;
BOOST_FOREACH(const sharedFactor& factor, factors_)
if (factor)
allKeys.insert(factor->begin(), factor->end());
return allKeys;
}
/* ************************************************************************* */
} // namespace gtsam

View File

@ -0,0 +1,266 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file FactorGraph.h
* @brief Factor Graph Base Class
* @author Carlos Nieto
* @author Christian Potthast
* @author Michael Kaess
*/
// \callgraph
#pragma once
#include <boost/serialization/nvp.hpp>
#include <boost/function.hpp>
#include <gtsam/base/Testable.h>
#include <gtsam/inference/Key.h>
namespace gtsam {
/**
* A factor graph is a bipartite graph with factor nodes connected to variable nodes.
* In this class, however, only factor nodes are kept around.
* \nosubgrouping
*/
template<class FACTOR>
class FactorGraphUnordered {
public:
typedef FACTOR FactorType; ///< factor type
typedef boost::shared_ptr<FACTOR> sharedFactor; ///< Shared pointer to a factor
typedef boost::shared_ptr<typename FACTOR::ConditionalType> sharedConditional; ///< Shared pointer to a conditional
typedef FactorGraphUnordered<FACTOR> This; ///< Typedef for this class
typedef boost::shared_ptr<This> shared_ptr; ///< Shared pointer for this class
typedef typename std::vector<sharedFactor>::iterator iterator;
typedef typename std::vector<sharedFactor>::const_iterator const_iterator;
/** typedef for elimination result */
typedef std::pair<sharedConditional, sharedFactor> EliminationResult;
/** typedef for an eliminate subroutine */
typedef boost::function<EliminationResult(const This&, size_t)> Eliminate;
protected:
/** concept check, makes sure FACTOR defines print and equals */
GTSAM_CONCEPT_TESTABLE_TYPE(FACTOR)
/** Collection of factors */
std::vector<sharedFactor> factors_;
public:
/// @name Standard Constructor
/// @{
/** Default constructor */
FactorGraphUnordered() {}
/// @}
/// @name Advanced Constructors
/// @{
// TODO: are these needed?
///**
// * @brief Constructor from a Bayes net
// * @param bayesNet the Bayes net to convert, type CONDITIONAL must yield compatible factor
// * @return a factor graph with all the conditionals, as factors
// */
//template<class CONDITIONAL>
//FactorGraph(const BayesNet<CONDITIONAL>& bayesNet);
///** convert from Bayes tree */
//template<class CONDITIONAL, class CLIQUE>
//FactorGraph(const BayesTree<CONDITIONAL, CLIQUE>& bayesTree);
///** convert from a derived type */
//template<class DERIVEDFACTOR>
//FactorGraph(const FactorGraph<DERIVEDFACTOR>& factors) {
// factors_.assign(factors.begin(), factors.end());
//}
/// @}
/// @name Adding Factors
/// @{
/**
* Reserve space for the specified number of factors if you know in
* advance how many there will be (works like std::vector::reserve).
*/
void reserve(size_t size) { factors_.reserve(size); }
// TODO: are these needed?
/** Add a factor */
template<class DERIVEDFACTOR>
void push_back(const boost::shared_ptr<DERIVEDFACTOR>& factor) {
factors_.push_back(boost::shared_ptr<FACTOR>(factor));
}
/** push back many factors */
void push_back(const This& factors) {
factors_.insert(end(), factors.begin(), factors.end());
}
/** push back many factors with an iterator */
template<typename ITERATOR>
void push_back(ITERATOR firstFactor, ITERATOR lastFactor) {
factors_.insert(end(), firstFactor, lastFactor);
}
/**
* @brief Add a vector of derived factors
* @param factors to add
*/
//template<typename DERIVEDFACTOR>
//void push_back(const std::vector<typename boost::shared_ptr<DERIVEDFACTOR> >& factors) {
// factors_.insert(end(), factors.begin(), factors.end());
//}
/// @}
/// @name Testable
/// @{
/** print out graph */
void print(const std::string& s = "FactorGraph",
const KeyFormatter& formatter = DefaultKeyFormatter) const;
/** Check equality */
bool equals(const This& fg, double tol = 1e-9) const;
/// @}
/// @name Standard Interface
/// @{
/** return the number of factors (including any null factors set by remove() ). */
size_t size() const { return factors_.size(); }
/** Check if the graph is empty (null factors set by remove() will cause this to return false). */
bool empty() const { return factors_.empty(); }
/** Get a specific factor by index (this checks array bounds and may throw an exception, as
* opposed to operator[] which does not).
*/
const sharedFactor at(size_t i) const { return factors_.at(i); }
/** Get a specific factor by index (this checks array bounds and may throw an exception, as
* opposed to operator[] which does not).
*/
sharedFactor& at(size_t i) { return factors_.at(i); }
/** Get a specific factor by index (this does not check array bounds, as opposed to at() which
* does).
*/
const sharedFactor operator[](size_t i) const { return at(i); }
/** Get a specific factor by index (this does not check array bounds, as opposed to at() which
* does).
*/
sharedFactor& operator[](size_t i) { return at(i); }
/** Iterator to beginning of factors. */
const_iterator begin() const { return factors_.begin();}
/** Iterator to end of factors. */
const_iterator end() const { return factors_.end(); }
/** Get the first factor */
sharedFactor front() const { return factors_.front(); }
/** Get the last factor */
sharedFactor back() const { return factors_.back(); }
///** Eliminate the first \c n frontal variables, returning the resulting
// * conditional and remaining factor graph - this is very inefficient for
// * eliminating all variables, to do that use EliminationTree or
// * JunctionTree.
// */
//std::pair<sharedConditional, FactorGraph<FactorType> > eliminateFrontals(size_t nFrontals, const Eliminate& eliminate) const;
//
///** Factor the factor graph into a conditional and a remaining factor graph. Given the factor
// * graph \f$ f(X) \f$, and \c variables to factorize out \f$ V \f$, this function factorizes
// * into \f$ f(X) = f(V;Y)f(Y) \f$, where \f$ Y := X \backslash V \f$ are the remaining
// * variables. If \f$ f(X) = p(X) \f$ is a probability density or likelihood, the factorization
// * produces a conditional probability density and a marginal \f$ p(X) = p(V|Y)p(Y) \f$.
// *
// * For efficiency, this function treats the variables to eliminate
// * \c variables as fully-connected, so produces a dense (fully-connected)
// * conditional on all of the variables in \c variables, instead of a sparse BayesNet. If the
// * variables are not fully-connected, it is more efficient to sequentially factorize multiple
// * times.
// */
//std::pair<sharedConditional, FactorGraph<FactorType> > eliminate(
// const std::vector<KeyType>& variables, const Eliminate& eliminateFcn,
// boost::optional<const VariableIndex&> variableIndex = boost::none) const;
///** Eliminate a single variable, by calling FactorGraph::eliminate. */
//std::pair<sharedConditional, FactorGraph<FactorType> > eliminateOne(
// KeyType variable, const Eliminate& eliminateFcn,
// boost::optional<const VariableIndex&> variableIndex = boost::none) const {
// std::vector<size_t> variables(1, variable);
// return eliminate(variables, eliminateFcn, variableIndex);
//}
/// @}
/// @name Modifying Factor Graphs (imperative, discouraged)
/// @{
/** non-const STL-style begin() */
iterator begin() { return factors_.begin();}
/** non-const STL-style end() */
iterator end() { return factors_.end(); }
/** Directly resize the number of factors in the graph. If the new size is less than the
* original, factors at the end will be removed. If the new size is larger than the original,
* null factors will be appended.
*/
void resize(size_t size) { factors_.resize(size); }
/** delete factor without re-arranging indexes by inserting a NULL pointer */
void remove(size_t i) { factors_[i].reset();}
/** replace a factor by index */
void replace(size_t index, sharedFactor factor) { at(index) = factor; }
/// @}
/// @name Advanced Interface
/// @{
/** return the number of non-null factors */
size_t nrFactors() const;
/** Potentially very slow function to return all keys involved */
FastSet<Key> keys() const;
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(factors_);
}
/// @}
}; // FactorGraph
} // namespace gtsam
#include <gtsam/inference/FactorGraphUnordered-inl.h>

View File

@ -0,0 +1,39 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Factor.cpp
* @brief The base class for all factors
* @author Kai Ni
* @author Frank Dellaert
* @author Richard Roberts
*/
// \callgraph
#include <gtsam/inference/FactorUnordered.h>
namespace gtsam {
/* ************************************************************************* */
void FactorUnordered::print(const std::string& s = "Factor", const KeyFormatter& formatter = DefaultKeyFormatter) const
{
return this->printKeys(s, formatter);
}
/* ************************************************************************* */
void FactorUnordered::printKeys(const std::string& s, const KeyFormatter& formatter) const {
std::cout << s << " ";
BOOST_FOREACH(KEY key, keys_) std::cout << " " << formatter(key);
std::cout << std::endl;
}
}

View File

@ -0,0 +1,185 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Factor.h
* @brief The base class for all factors
* @author Kai Ni
* @author Frank Dellaert
* @author Richard Roberts
*/
// \callgraph
#pragma once
#include <vector>
#include <boost/serialization/nvp.hpp>
#include <gtsam/base/types.h>
#include <gtsam/inference/Key.h>
namespace gtsam {
/**
* This is the base class for all factor types. It is templated on a KEY type,
* which will be the type used to label variables. Key types currently in use
* in gtsam are Index with symbolic (IndexFactor, SymbolicFactorGraph) and
* Gaussian factors (GaussianFactor, JacobianFactor, HessianFactor, GaussianFactorGraph),
* and Key with nonlinear factors (NonlinearFactor, NonlinearFactorGraph).
* though currently only IndexFactor and IndexConditional derive from this
* class, using Index keys. This class does not store any data other than its
* keys. Derived classes store data such as matrices and probability tables.
*
* Note that derived classes *must* redefine the ConditionalType and shared_ptr
* typedefs to refer to the associated conditional and shared_ptr types of the
* derived class. See IndexFactor, JacobianFactor, etc. for examples.
*
* This class is \b not virtual for performance reasons - derived symbolic classes,
* IndexFactor and IndexConditional, need to be created and destroyed quickly
* during symbolic elimination. GaussianFactor and NonlinearFactor are virtual.
* \nosubgrouping
*/
class FactorUnordered {
public:
typedef FactorUnordered This; ///< This class
/// A shared_ptr to this class, derived classes must redefine this.
typedef boost::shared_ptr<FactorUnordered> shared_ptr;
/// Iterator over keys
typedef std::vector<Key>::iterator iterator;
/// Const iterator over keys
typedef std::vector<Key>::const_iterator const_iterator;
protected:
/// The keys involved in this factor
std::vector<Key> keys_;
public:
/// @name Standard Constructors
/// @{
/** Default constructor for I/O */
FactorUnordered() {}
/** Construct unary factor */
FactorUnordered(Key key) : keys_(1) { keys_[0] = key; }
/** Construct binary factor */
FactorUnordered(Key key1, Key key2) : keys_(2) { keys_[0] = key1; keys_[1] = key2; }
/** Construct ternary factor */
FactorUnordered(Key key1, Key key2, Key key3) : keys_(3) { keys_[0] = key1; keys_[1] = key2; keys_[2] = key3; }
/** Construct 4-way factor */
FactorUnordered(Key key1, Key key2, Key key3, Key key4) : keys_(4) {
keys_[0] = key1; keys_[1] = key2; keys_[2] = key3; keys_[3] = key4; }
/** Construct 5-way factor */
FactorUnordered(Key key1, Key key2, Key key3, Key key4, Key key5) : keys_(5) {
keys_[0] = key1; keys_[1] = key2; keys_[2] = key3; keys_[3] = key4; keys_[4] = key5; }
/** Construct 6-way factor */
FactorUnordered(Key key1, Key key2, Key key3, Key key4, Key key5, Key key6) : keys_(6) {
keys_[0] = key1; keys_[1] = key2; keys_[2] = key3; keys_[3] = key4; keys_[4] = key5; keys_[5] = key6; }
/// @}
/// @name Advanced Constructors
/// @{
/** Construct n-way factor from container of keys. */
template<class CONTAINER>
static FactorUnordered FromKeys(const CONTAINER& keys) { return FromIterator(keys.begin(), keys.end()); }
/** Construct n-way factor from iterator over keys. */
template<class ITERATOR> static FactorUnordered FromIterator(ITERATOR first, ITERATOR last) {
FactorUnordered result; result.keys_.assign(first, last); }
/// @}
/// @name Standard Interface
/// @{
/// First key
Key front() const { return keys_.front(); }
/// Last key
Key back() const { return keys_.back(); }
/// find
const_iterator find(Key key) const { return std::find(begin(), end(), key); }
/// Access the factor's involved variable keys
const std::vector<Key>& keys() const { return keys_; }
/** Iterator at beginning of involved variable keys */
const_iterator begin() const { return keys_.begin(); }
/** Iterator at end of involved variable keys */
const_iterator end() const { return keys_.end(); }
/**
* @return the number of variables involved in this factor
*/
size_t size() const { return keys_.size(); }
/// @}
/// @name Testable
/// @{
/// print
void print(const std::string& s = "Factor", const KeyFormatter& formatter = DefaultKeyFormatter) const;
/// print only keys
void printKeys(const std::string& s = "Factor", const KeyFormatter& formatter = DefaultKeyFormatter) const;
/// check equality
bool equals(const This& other, double tol = 1e-9) const;
/// @}
/// @name Advanced Interface
/// @{
/** @return keys involved in this factor */
std::vector<Key>& keys() { return keys_; }
/** Iterator at beginning of involved variable keys */
iterator begin() { return keys_.begin(); }
/** Iterator at end of involved variable keys */
iterator end() { return keys_.end(); }
private:
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(keys_);
}
/// @}
};
}

View File

@ -0,0 +1,130 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Ordering.cpp
* @author Richard Roberts
* @date Sep 2, 2010
*/
#include "Ordering.h"
#include <string>
#include <iostream>
#include <boost/foreach.hpp>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
Ordering::Ordering(const std::list<Key> & L) {
int i = 0;
BOOST_FOREACH( Key s, L )
insert(s, i++) ;
}
/* ************************************************************************* */
Ordering::Ordering(const Ordering& other) : order_(other.order_), orderingIndex_(other.size()) {
for(iterator item = order_.begin(); item != order_.end(); ++item)
orderingIndex_[item->second] = item;
}
/* ************************************************************************* */
Ordering& Ordering::operator=(const Ordering& rhs) {
order_ = rhs.order_;
orderingIndex_.resize(rhs.size());
for(iterator item = order_.begin(); item != order_.end(); ++item)
orderingIndex_[item->second] = item;
return *this;
}
/* ************************************************************************* */
void Ordering::permuteInPlace(const Permutation& permutation) {
gttic(Ordering_permuteInPlace);
// Allocate new index and permute in map iterators
OrderingIndex newIndex(permutation.size());
for(size_t j = 0; j < newIndex.size(); ++j) {
newIndex[j] = orderingIndex_[permutation[j]]; // Assign the iterator
newIndex[j]->second = j; // Change the stored index to its permuted value
}
// Swap the new index into this Ordering class
orderingIndex_.swap(newIndex);
}
/* ************************************************************************* */
void Ordering::permuteInPlace(const Permutation& selector, const Permutation& permutation) {
if(selector.size() != permutation.size())
throw invalid_argument("Ordering::permuteInPlace (partial permutation version) called with selector and permutation of different sizes.");
// Create new index the size of the permuted entries
OrderingIndex newIndex(selector.size());
// Permute the affected entries into the new index
for(size_t dstSlot = 0; dstSlot < selector.size(); ++dstSlot)
newIndex[dstSlot] = orderingIndex_[selector[permutation[dstSlot]]];
// Put the affected entries back in the new order and fix the indices
for(size_t slot = 0; slot < selector.size(); ++slot) {
orderingIndex_[selector[slot]] = newIndex[slot];
orderingIndex_[selector[slot]]->second = selector[slot];
}
}
/* ************************************************************************* */
void Ordering::print(const string& str, const KeyFormatter& keyFormatter) const {
cout << str;
// Print ordering in index order
// Print the ordering with varsPerLine ordering entries printed on each line,
// for compactness.
static const size_t varsPerLine = 10;
bool endedOnNewline = false;
BOOST_FOREACH(const Map::iterator& index_key, orderingIndex_) {
if(index_key->second % varsPerLine != 0)
cout << ", ";
cout << index_key->second<< ":" << keyFormatter(index_key->first);
if(index_key->second % varsPerLine == varsPerLine - 1) {
cout << "\n";
endedOnNewline = true;
} else {
endedOnNewline = false;
}
}
if(!endedOnNewline)
cout << "\n";
cout.flush();
}
/* ************************************************************************* */
bool Ordering::equals(const Ordering& rhs, double tol) const {
return order_ == rhs.order_;
}
/* ************************************************************************* */
Ordering::value_type Ordering::pop_back() {
iterator lastItem = orderingIndex_.back(); // Get the map iterator to the highest-index entry
value_type removed = *lastItem; // Save the key-index pair to return
order_.erase(lastItem); // Erase the entry from the map
orderingIndex_.pop_back(); // Erase the entry from the index
return removed; // Return the removed item
}
/* ************************************************************************* */
void Unordered::print(const string& s) const {
cout << s << " (" << size() << "):";
BOOST_FOREACH(Index key, *this)
cout << " " << key;
cout << endl;
}
/* ************************************************************************* */
bool Unordered::equals(const Unordered &other, double tol) const {
return *this == other;
}
}

View File

@ -0,0 +1,271 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Ordering.h
* @author Richard Roberts
* @date Sep 2, 2010
*/
#pragma once
#include <gtsam/inference/Key.h>
#include <gtsam/inference/inference.h>
#include <gtsam/base/FastMap.h>
#include <boost/foreach.hpp>
#include <boost/assign/list_inserter.hpp>
#include <boost/pool/pool_alloc.hpp>
#include <vector>
namespace gtsam {
/**
* An ordering is a map from symbols (non-typed keys) to integer indices
* \nosubgrouping
*/
class GTSAM_EXPORT Ordering {
protected:
typedef FastMap<Key, Index> Map;
typedef std::vector<Map::iterator> OrderingIndex;
Map order_;
OrderingIndex orderingIndex_;
public:
typedef boost::shared_ptr<Ordering> shared_ptr;
typedef std::pair<const Key, Index> value_type;
typedef Map::iterator iterator;
typedef Map::const_iterator const_iterator;
/// @name Standard Constructors
/// @{
/// Default constructor for empty ordering
Ordering() {}
/// Copy constructor
Ordering(const Ordering& other);
/// Construct from list, assigns order indices sequentially to list items.
Ordering(const std::list<Key> & L);
/// Assignment operator
Ordering& operator=(const Ordering& rhs);
/// @}
/// @name Standard Interface
/// @{
/** The actual number of variables in this ordering, i.e. not including missing indices in the count. See also nVars(). */
Index size() const { return orderingIndex_.size(); }
const_iterator begin() const { return order_.begin(); } /**< Iterator in order of sorted symbols, not in elimination/index order! */
const_iterator end() const { return order_.end(); } /**< Iterator in order of sorted symbols, not in elimination/index order! */
Index at(Key key) const { return operator[](key); } ///< Synonym for operator[](Key) const
Key key(Index index) const {
if(index >= orderingIndex_.size())
throw std::out_of_range("Attempting to access out-of-range index in Ordering");
else
return orderingIndex_[index]->first; }
/** Assigns the ordering index of the requested \c key into \c index if the symbol
* is present in the ordering, otherwise does not modify \c index. The
* return value indicates whether the symbol is in fact present in the
* ordering.
* @param key The key whose index you request
* @param [out] index Reference into which to write the index of the requested key, if the key is present.
* @return true if the key is present and \c index was modified, false otherwise.
*/
bool tryAt(Key key, Index& index) const {
const_iterator i = order_.find(key);
if(i != order_.end()) {
index = i->second;
return true;
} else
return false; }
/// Access the index for the requested key, throws std::out_of_range if the
/// key is not present in the ordering (note that this differs from the
/// behavior of std::map)
Index& operator[](Key key) {
iterator i=order_.find(key);
if(i == order_.end()) throw std::out_of_range(
std::string("Attempting to access a key from an ordering that does not contain that key:") + DefaultKeyFormatter(key));
else return i->second; }
/// Access the index for the requested key, throws std::out_of_range if the
/// key is not present in the ordering (note that this differs from the
/// behavior of std::map)
Index operator[](Key key) const {
const_iterator i=order_.find(key);
if(i == order_.end()) throw std::out_of_range(
std::string("Attempting to access a key from an ordering that does not contain that key:") + DefaultKeyFormatter(key));
else return i->second; }
/** Returns an iterator pointing to the symbol/index pair with the requested,
* or the end iterator if it does not exist.
*
* @return An iterator pointing to the symbol/index pair with the requested,
* or the end iterator if it does not exist.
*/
iterator find(Key key) { return order_.find(key); }
/** Returns an iterator pointing to the symbol/index pair with the requested,
* or the end iterator if it does not exist.
*
* @return An iterator pointing to the symbol/index pair with the requested,
* or the end iterator if it does not exist.
*/
const_iterator find(Key key) const { return order_.find(key); }
/** Insert a key-index pair, but will fail if the key is already present */
iterator insert(const value_type& key_order) {
std::pair<iterator,bool> it_ok(order_.insert(key_order));
if(it_ok.second) {
if(key_order.second >= orderingIndex_.size())
orderingIndex_.resize(key_order.second + 1);
orderingIndex_[key_order.second] = it_ok.first;
return it_ok.first;
} else
throw std::invalid_argument(std::string("Attempting to insert a key into an ordering that already contains that key")); }
/// Test if the key exists in the ordering.
bool exists(Key key) const { return order_.count(key) > 0; }
/** Insert a key-index pair, but will fail if the key is already present */
iterator insert(Key key, Index order) { return insert(std::make_pair(key,order)); }
/// Adds a new key to the ordering with an index of one greater than the current highest index.
Index push_back(Key key) { return insert(std::make_pair(key, orderingIndex_.size()))->second; }
/// @}
/// @name Advanced Interface
/// @{
/**
* Iterator in order of sorted symbols, not in elimination/index order!
*/
iterator begin() { return order_.begin(); }
/**
* Iterator in order of sorted symbols, not in elimination/index order!
*/
iterator end() { return order_.end(); }
/** Remove the last (last-ordered, not highest-sorting key) symbol/index pair
* from the ordering (this version is \f$ O(n) \f$, use it when you do not
* know the last-ordered key).
*
* If you already know the last-ordered symbol, call popback(Key)
* that accepts this symbol as an argument.
*
* @return The symbol and index that were removed.
*/
value_type pop_back();
/**
* += operator allows statements like 'ordering += x0,x1,x2,x3;', which are
* very useful for unit tests. This functionality is courtesy of
* boost::assign.
*/
inline boost::assign::list_inserter<boost::assign_detail::call_push_back<Ordering>, Key>
operator+=(Key key) {
return boost::assign::make_list_inserter(boost::assign_detail::call_push_back<Ordering>(*this))(key); }
/**
* Reorder the variables with a permutation. This is typically used
* internally, permuting an initial key-sorted ordering into a fill-reducing
* ordering.
*/
void permuteInPlace(const Permutation& permutation);
void permuteInPlace(const Permutation& selector, const Permutation& permutation);
/// Synonym for operator[](Key)
Index& at(Key key) { return operator[](key); }
/// @}
/// @name Testable
/// @{
/** print (from Testable) for testing and debugging */
void print(const std::string& str = "Ordering:\n", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
/** equals (from Testable) for testing and debugging */
bool equals(const Ordering& rhs, double tol = 0.0) const;
/// @}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void save(ARCHIVE & ar, const unsigned int version) const
{
ar & BOOST_SERIALIZATION_NVP(order_);
size_t size_ = orderingIndex_.size(); // Save only the size but not the iterators
ar & BOOST_SERIALIZATION_NVP(size_);
}
template<class ARCHIVE>
void load(ARCHIVE & ar, const unsigned int version)
{
ar & BOOST_SERIALIZATION_NVP(order_);
size_t size_;
ar & BOOST_SERIALIZATION_NVP(size_);
orderingIndex_.resize(size_);
for(iterator item = order_.begin(); item != order_.end(); ++item)
orderingIndex_[item->second] = item; // Assign the iterators
}
BOOST_SERIALIZATION_SPLIT_MEMBER()
}; // \class Ordering
/**
* @class Unordered
* @brief a set of unordered indices
*/
class Unordered: public std::set<Index> {
public:
/** Default constructor creates empty ordering */
Unordered() { }
/** Create from a single symbol */
Unordered(Index key) { insert(key); }
/** Copy constructor */
Unordered(const std::set<Index>& keys_in) : std::set<Index>(keys_in) {}
/** whether a key exists */
bool exists(const Index& key) { return find(key) != end(); }
// Testable
GTSAM_EXPORT void print(const std::string& s = "Unordered") const;
GTSAM_EXPORT bool equals(const Unordered &t, double tol=0) const;
};
// Create an index formatter that looks up the Key in an inverse ordering, then
// formats the key using the provided key formatter, used in saveGraph.
class GTSAM_EXPORT OrderingIndexFormatter {
private:
Ordering ordering_;
KeyFormatter keyFormatter_;
public:
OrderingIndexFormatter(const Ordering& ordering, const KeyFormatter& keyFormatter) :
ordering_(ordering), keyFormatter_(keyFormatter) {}
std::string operator()(Index index) {
return keyFormatter_(ordering_.key(index)); }
};
} // \namespace gtsam

View File

@ -0,0 +1,24 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SymbolicConditional.cpp
* @author Richard Roberts
* @date Oct 17, 2010
*/
#include <gtsam/inference/SymbolicConditionalUnordered.h>
namespace gtsam {
using namespace std;
}

View File

@ -0,0 +1,85 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SymbolicConditional.h
* @author Richard Roberts
* @date Oct 17, 2010
*/
#pragma once
#include <gtsam/base/types.h>
#include <gtsam/inference/SymbolicFactorUnordered.h>
#include <gtsam/inference/ConditionalUnordered.h>
namespace gtsam {
/**
* SymbolicConditionalUnordered is a conditional with keys but no probability
* data, produced by symbolic elimination of SymbolicFactorUnordered.
*
* It is also a SymbolicFactorUnordered, and thus derives from it. It
* derives also from ConditionalUnordered<This>, which is a generic interface
* class for conditionals.
* \nosubgrouping
*/
class SymbolicConditionalUnordered : public SymbolicFactorUnordered, public ConditionalUnordered<SymbolicFactorUnordered> {
public:
typedef SymbolicConditionalUnordered This; /// Typedef to this class
typedef SymbolicFactorUnordered BaseFactor; /// Typedef to the factor base class
typedef ConditionalUnordered<SymbolicFactorUnordered> BaseConditional; /// Typedef to the conditional base class
typedef boost::shared_ptr<This> shared_ptr; /// Boost shared_ptr to this class
typedef BaseFactor::iterator iterator; /// iterator to keys
typedef BaseFactor::const_iterator const_iterator; /// const_iterator to keys
/// @name Standard Constructors
/// @{
/** Empty Constructor to make serialization possible */
SymbolicConditionalUnordered() {}
/** No parents */
SymbolicConditionalUnordered(Index j) : BaseFactor(j), BaseConditional(0) {}
/** Single parent */
SymbolicConditionalUnordered(Index j, Index parent) : BaseFactor(j, parent), BaseConditional(1) {}
/** Two parents */
SymbolicConditionalUnordered(Index j, Index parent1, Index parent2) : BaseFactor(j, parent1, parent2), BaseConditional(2) {}
/** Three parents */
SymbolicConditionalUnordered(Index j, Index parent1, Index parent2, Index parent3) : BaseFactor(j, parent1, parent2, parent3), BaseConditional(3) {}
/** Named constructor from an arbitrary number of keys and frontals */
template<class ITERATOR>
static SymbolicConditionalUnordered FromIterator(ITERATOR firstKey, ITERATOR lastKey, size_t nrFrontals) :
{
SymbolicConditionalUnordered result;
result.keys_.assign(firstKey, lastKey);
result.nrFrontals_ = nrFrontals;
return result;
}
/// @}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
}
};
}

View File

@ -0,0 +1,61 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SymbolicEliminationTreeUnordered.h
* @date Mar 29, 2013
* @author Frank Dellaert
* @author Richard Roberts
*/
#include <gtsam/inference/SymbolicBayesNetUnordered.h>
#include <gtsam/inference/SymbolicFactorGraphUnordered.h>
#include <gtsam/inference/EliminationTreeUnordered.h>
namespace gtsam {
class SymbolicEliminationTreeUnordered : public EliminationTreeUnordered<SymbolicBayesNetUnordered,SymbolicFactorGraphUnordered> {
public:
typedef EliminationTreeUnordered<SymbolicBayesNetUnordered,SymbolicFactorGraphUnordered> Base; ///< Base class
typedef SymbolicEliminationTreeUnordered This; ///< This class
typedef boost::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
/**
* Build the elimination tree of a factor graph using pre-computed column structure.
* @param factorGraph The factor graph for which to build the elimination tree
* @param structure The set of factors involving each variable. If this is not
* precomputed, you can call the Create(const FactorGraph<DERIVEDFACTOR>&)
* named constructor instead.
* @return The elimination tree
*/
SymbolicEliminationTreeUnordered(const SymbolicFactorGraphUnordered& factorGraph,
const VariableIndexUnordered& structure, const std::vector<Key>& order) :
Base(factorGraph, structure, order) {}
/** Build the elimination tree of a factor graph. Note that this has to compute the column
* structure as a VariableIndex, so if you already have this precomputed, use the other
* constructor instead.
* @param factorGraph The factor graph for which to build the elimination tree
*/
SymbolicEliminationTreeUnordered(const FactorGraphType& factorGraph, const std::vector<Key>& order) :
Base(factorGraph, order) {}
/** Copy constructor - makes a deep copy of the tree structure, but only pointers to factors are
* copied, factors are not cloned. */
SymbolicEliminationTreeUnordered(const This& other) : Base(other) {}
/** Assignment operator - makes a deep copy of the tree structure, but only pointers to factors are
* copied, factors are not cloned. */
This& operator=(const This& other) { (void) Base::operator=(other); return *this; }
};
}

View File

@ -0,0 +1,94 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SymbolicFactorGraph.cpp
* @date Oct 29, 2009
* @author Frank Dellaert
*/
#include <boost/make_shared.hpp>
#include <gtsam/inference/SymbolicFactorGraphUnordered.h>
namespace gtsam {
using namespace std;
/* ************************************************************************* */
void SymbolicFactorGraphUnordered::push_factor(Key key) {
push_back(boost::make_shared<SymbolicFactorUnordered>(key));
}
/* ************************************************************************* */
void SymbolicFactorGraphUnordered::push_factor(Key key1, Key key2) {
push_back(boost::make_shared<SymbolicFactorUnordered>(key1,key2));
}
/* ************************************************************************* */
void SymbolicFactorGraphUnordered::push_factor(Key key1, Key key2, Key key3) {
push_back(boost::make_shared<SymbolicFactorUnordered>(key1,key2,key3));
}
/* ************************************************************************* */
void SymbolicFactorGraphUnordered::push_factor(Key key1, Key key2, Key key3, Key key4) {
push_back(boost::make_shared<SymbolicFactorUnordered>(key1,key2,key3,key4));
}
// /* ************************************************************************* */
// std::pair<SymbolicFactorGraph::sharedConditional, SymbolicFactorGraph>
// SymbolicFactorGraph::eliminateFrontals(size_t nFrontals) const
// {
// return FactorGraph<IndexFactor>::eliminateFrontals(nFrontals, EliminateSymbolic);
// }
//
// /* ************************************************************************* */
// std::pair<SymbolicFactorGraph::sharedConditional, SymbolicFactorGraph>
// SymbolicFactorGraph::eliminate(const std::vector<Index>& variables) const
// {
// return FactorGraph<IndexFactor>::eliminate(variables, EliminateSymbolic);
// }
//
// /* ************************************************************************* */
// std::pair<SymbolicFactorGraph::sharedConditional, SymbolicFactorGraph>
// SymbolicFactorGraph::eliminateOne(Index variable) const
// {
// return FactorGraph<IndexFactor>::eliminateOne(variable, EliminateSymbolic);
// }
//
// /* ************************************************************************* */
// IndexFactor::shared_ptr CombineSymbolic(
// const FactorGraph<IndexFactor>& factors, const FastMap<Index,
// vector<Index> >& variableSlots) {
// IndexFactor::shared_ptr combined(Combine<IndexFactor, Index> (factors, variableSlots));
//// combined->assertInvariants();
// return combined;
// }
//
// /* ************************************************************************* */
// pair<IndexConditional::shared_ptr, IndexFactor::shared_ptr> //
// EliminateSymbolic(const FactorGraph<IndexFactor>& factors, size_t nrFrontals) {
//
// FastSet<Index> keys;
// BOOST_FOREACH(const IndexFactor::shared_ptr& factor, factors)
// BOOST_FOREACH(Index var, *factor)
// keys.insert(var);
//
// if (keys.size() < nrFrontals) throw invalid_argument(
// "EliminateSymbolic requested to eliminate more variables than exist in graph.");
//
// vector<Index> newKeys(keys.begin(), keys.end());
// return make_pair(boost::make_shared<IndexConditional>(newKeys, nrFrontals),
// boost::make_shared<IndexFactor>(newKeys.begin() + nrFrontals, newKeys.end()));
// }
/* ************************************************************************* */
}

View File

@ -0,0 +1,104 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SymbolicFactorGraph.h
* @date Oct 29, 2009
* @author Frank Dellaert
*/
#pragma once
#include <gtsam/base/types.h>
#include <gtsam/inference/FactorGraphUnordered.h>
#include <gtsam/inference/SymbolicFactorUnordered.h>
namespace gtsam {
/** Symbolic Factor Graph
* \nosubgrouping
*/
class SymbolicFactorGraphUnordered: public FactorGraphUnordered<SymbolicFactorUnordered> {
public:
/// @name Standard Constructors
/// @{
/** Construct empty factor graph */
SymbolicFactorGraphUnordered() {}
///** Eliminate the first \c n frontal variables, returning the resulting
// * conditional and remaining factor graph - this is very inefficient for
// * eliminating all variables, to do that use EliminationTree or
// * JunctionTree. Note that this version simply calls
// * FactorGraph<IndexFactor>::eliminateFrontals with EliminateSymbolic
// * as the eliminate function argument.
// */
//GTSAM_EXPORT std::pair<sharedConditional, SymbolicFactorGraph> eliminateFrontals(size_t nFrontals) const;
//
///** Factor the factor graph into a conditional and a remaining factor graph.
// * Given the factor graph \f$ f(X) \f$, and \c variables to factorize out
// * \f$ V \f$, this function factorizes into \f$ f(X) = f(V;Y)f(Y) \f$, where
// * \f$ Y := X\V \f$ are the remaining variables. If \f$ f(X) = p(X) \f$ is
// * a probability density or likelihood, the factorization produces a
// * conditional probability density and a marginal \f$ p(X) = p(V|Y)p(Y) \f$.
// *
// * For efficiency, this function treats the variables to eliminate
// * \c variables as fully-connected, so produces a dense (fully-connected)
// * conditional on all of the variables in \c variables, instead of a sparse
// * BayesNet. If the variables are not fully-connected, it is more efficient
// * to sequentially factorize multiple times.
// * Note that this version simply calls
// * FactorGraph<GaussianFactor>::eliminate with EliminateSymbolic as the eliminate
// * function argument.
// */
//GTSAM_EXPORT std::pair<sharedConditional, SymbolicFactorGraph> eliminate(const std::vector<Index>& variables) const;
///** Eliminate a single variable, by calling SymbolicFactorGraph::eliminate. */
//GTSAM_EXPORT std::pair<sharedConditional, SymbolicFactorGraph> eliminateOne(Index variable) const;
/// @}
/// @name Standard Interface
/// @{
/// @}
/// @name Advanced Interface
/// @{
/** Push back unary factor */
GTSAM_EXPORT void push_factor(Key key);
/** Push back binary factor */
GTSAM_EXPORT void push_factor(Key key1, Key key2);
/** Push back ternary factor */
GTSAM_EXPORT void push_factor(Key key1, Key key2, Key key3);
/** Push back 4-way factor */
GTSAM_EXPORT void push_factor(Key key1, Key key2, Key key3, Key key4);
};
/** Create a combined joint factor (new style for EliminationTree). */
GTSAM_EXPORT IndexFactor::shared_ptr CombineSymbolic(const FactorGraph<IndexFactor>& factors,
const FastMap<Index, std::vector<Index> >& variableSlots);
/**
* CombineAndEliminate provides symbolic elimination.
* Combine and eliminate can also be called separately, but for this and
* derived classes calling them separately generally does extra work.
*/
GTSAM_EXPORT std::pair<boost::shared_ptr<IndexConditional>, boost::shared_ptr<IndexFactor> >
EliminateSymbolic(const FactorGraph<IndexFactor>&, size_t nrFrontals = 1);
/// @}
} // namespace gtsam

View File

@ -0,0 +1,23 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SymbolicFactor.cpp
* @author Richard Roberts
* @date Oct 17, 2010
*/
#include <gtsam/inference/SymbolicFactorUnordered.h>
using namespace std;
namespace gtsam {
} // gtsam

View File

@ -0,0 +1,97 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SymbolicFactor.h
* @author Richard Roberts
* @date Oct 17, 2010
*/
#pragma once
#include <gtsam/inference/FactorUnordered.h>
#include <gtsam/inference/Key.h>
namespace gtsam {
// Forward declaration of SymbolicConditional
class SymbolicConditionalUnordered;
/**
* SymbolicFactorUnordered serves two purposes. It is the base class for all linear
* factors (GaussianFactor, JacobianFactor, HessianFactor), and also functions
* as a symbolic factor, used to do symbolic elimination by JunctionTree.
*
* It derives from Factor with a key type of Key, an unsigned integer.
* \nosubgrouping
*/
class SymbolicFactorUnordered: public FactorUnordered {
public:
typedef SymbolicFactorUnordered This;
typedef FactorUnordered Base;
typedef SymbolicConditionalUnordered ConditionalType;
/** Overriding the shared_ptr typedef */
typedef boost::shared_ptr<This> shared_ptr;
/// @name Standard Interface
/// @{
/** Virtual destructor */
virtual ~SymbolicFactorUnordered() {}
/** Copy constructor */
SymbolicFactorUnordered(const This& f) : Base(f) {}
/** Default constructor for I/O */
SymbolicFactorUnordered() {}
/** Construct unary factor */
SymbolicFactorUnordered(Key j) : Base(j) {}
/** Construct binary factor */
SymbolicFactorUnordered(Key j1, Key j2) : Base(j1, j2) {}
/** Construct ternary factor */
SymbolicFactorUnordered(Key j1, Key j2, Key j3) : Base(j1, j2, j3) {}
/** Construct 4-way factor */
SymbolicFactorUnordered(Key j1, Key j2, Key j3, Key j4) : Base(j1, j2, j3, j4) {}
/** Construct 5-way factor */
SymbolicFactorUnordered(Key j1, Key j2, Key j3, Key j4, Key j5) : Base(j1, j2, j3, j4, j5) {}
/** Construct 6-way factor */
SymbolicFactorUnordered(Key j1, Key j2, Key j3, Key j4, Key j5, Key j6) : Base(j1, j2, j3, j4, j5, j6) {}
/// @}
/// @name Advanced Constructors
/// @{
/** Constructor from a collection of keys */
template<class KeyIterator> SymbolicFactorUnordered(KeyIterator beginKey, KeyIterator endKey) : Base(beginKey, endKey) {}
/// @}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
}
}; // IndexFactor
}

View File

@ -0,0 +1,83 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file VariableIndex-inl.h
* @author Richard Roberts
* @date March 26, 2013
*/
#pragma once
#include <gtsam/inference/VariableIndexUnordered.h>
namespace gtsam {
/* ************************************************************************* */
template<class FG>
void VariableIndexUnordered::augment(const FG& factors)
{
gttic(VariableIndex_augment);
// Save original number of factors for keeping track of indices
const size_t originalNFactors = nFactors_;
// Augment index for each factor
for(size_t i = 0; i < factors.size(); ++i) {
if(factors[i]) {
const size_t globalI = originalNFactors + i;
BOOST_FOREACH(const Key key, factors[i]) {
index_[key].push_back(globalI);
++ nEntries_;
}
}
++ nFactors_; // Increment factor count even if factors are null, to keep indices consistent
}
}
/* ************************************************************************* */
template<typename ITERATOR, class FG>
void VariableIndexUnordered::remove(ITERATOR firstFactor, ITERATOR lastFactor, const FG& factors)
{
gttic(VariableIndex_remove);
// NOTE: We intentionally do not decrement nFactors_ because the factor
// indices need to remain consistent. Removing factors from a factor graph
// does not shift the indices of other factors. Also, we keep nFactors_
// one greater than the highest-numbered factor referenced in a VariableIndex.
ITERATOR factorIndex = firstFactor;
size_t i = 0;
for( ; factorIndex != lastFactor; ++factorIndex, ++i) {
if(i >= factors.size())
throw std::invalid_argument("Internal error, requested inconsistent number of factor indices and factors in VariableIndex::remove");
if(factors[i]) {
BOOST_FOREACH(Key j, factors[i]) {
Factors& factorEntries = internalAt(j);
Factors::iterator entry = std::find(factorEntries.begin(), factorEntries.end(), indices[i]);
if(entry == factorEntries.end())
throw std::invalid_argument("Internal error, indices and factors passed into VariableIndex::remove are not consistent with the existing variable index");
factorEntries.erase(entry);
-- nEntries_;
}
}
}
}
/* ************************************************************************* */
template<typename ITERATOR>
void VariableIndexUnordered::removeUnusedVariables(ITERATOR firstKey, ITERATOR lastKey) {
for(ITERATOR key = firstKey; key != lastKey; ++key) {
assert(!internalAt(*key).empty());
index_.erase(*key);
}
}
}

View File

@ -0,0 +1,58 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file VariableIndex.cpp
* @author Richard Roberts
* @date March 26, 2013
*/
#include <iostream>
#include <gtsam/inference/VariableIndexUnordered.h>
namespace gtsam {
using namespace std;
/* ************************************************************************* */
bool VariableIndexUnordered::equals(const VariableIndexUnordered& other, double tol) const {
return this->nEntries_ == other.nEntries_ && this->nFactors_ == other.nFactors_
&& this->index_ == other.index_;
}
/* ************************************************************************* */
void VariableIndexUnordered::print(const string& str) const {
cout << str;
cout << "nEntries = " << nEntries() << ", nFactors = " << nFactors() << "\n";
BOOST_FOREACH(KeyMap::value_type key_factors, index_) {
cout << "var " << key_factors.first << ":";
BOOST_FOREACH(const size_t factor, key_factors.second)
cout << " " << factor;
cout << "\n";
}
cout.flush();
}
/* ************************************************************************* */
void VariableIndexUnordered::outputMetisFormat(ostream& os) const {
os << size() << " " << nFactors() << "\n";
// run over variables, which will be hyper-edges.
BOOST_FOREACH(KeyMap::value_type key_factors, index_) {
// every variable is a hyper-edge covering its factors
BOOST_FOREACH(const size_t factor, key_factors.second)
os << (factor+1) << " "; // base 1
os << "\n";
}
os << flush;
}
}

View File

@ -0,0 +1,181 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file VariableIndex.h
* @author Richard Roberts
* @date March 26, 2013
*/
#pragma once
#include <vector>
#include <deque>
#include <stdexcept>
#include <boost/foreach.hpp>
#include <gtsam/base/FastList.h>
#include <gtsam/base/FastMap.h>
#include <gtsam/base/types.h>
#include <gtsam/base/timing.h>
#include <gtsam/inference/Key.h>
namespace gtsam {
/**
* The VariableIndex class computes and stores the block column structure of a
* factor graph. The factor graph stores a collection of factors, each of
* which involves a set of variables. In contrast, the VariableIndex is built
* from a factor graph prior to elimination, and stores the list of factors
* that involve each variable. This information is stored as a deque of
* lists of factor indices.
* \nosubgrouping
*/
class GTSAM_EXPORT VariableIndexUnordered {
public:
typedef boost::shared_ptr<VariableIndexUnordered> shared_ptr;
typedef FastList<size_t> Factors;
typedef Factors::iterator Factor_iterator;
typedef Factors::const_iterator Factor_const_iterator;
protected:
typedef FastMap<Key,Factors> KeyMap;
KeyMap index_;
size_t nFactors_; // Number of factors in the original factor graph.
size_t nEntries_; // Sum of involved variable counts of each factor.
public:
typedef KeyMap::const_iterator const_iterator;
typedef KeyMap::const_iterator iterator;
public:
/// @name Standard Constructors
/// @{
/** Default constructor, creates an empty VariableIndex */
VariableIndexUnordered() : nFactors_(0), nEntries_(0) {}
/**
* Create a VariableIndex that computes and stores the block column structure
* of a factor graph.
*/
template<class FG>
VariableIndexUnordered(const FG& factorGraph) { augment(factorGraph); }
/// @}
/// @name Standard Interface
/// @{
/**
* The number of variable entries. This is one greater than the variable
* with the highest index.
*/
Index size() const { return index_.size(); }
/** The number of factors in the original factor graph */
size_t nFactors() const { return nFactors_; }
/** The number of nonzero blocks, i.e. the number of variable-factor entries */
size_t nEntries() const { return nEntries_; }
/** Access a list of factors by variable */
const Factors& operator[](Key variable) const {
KeyMap::const_iterator item = index_.find(variable);
if(item == index_.end())
throw std::invalid_argument("Requested non-existent variable from VariableIndex");
else
return item->second;
}
/// @}
/// @name Testable
/// @{
/** Test for equality (for unit tests and debug assertions). */
bool equals(const VariableIndexUnordered& other, double tol=0.0) const;
/** Print the variable index (for unit tests and debugging). */
void print(const std::string& str = "VariableIndex: ") const;
/**
* Output dual hypergraph to Metis file format for use with hmetis
* In the dual graph, variables are hyperedges, factors are nodes.
*/
void outputMetisFormat(std::ostream& os) const;
/// @}
/// @name Advanced Interface
/// @{
/**
* Augment the variable index with new factors. This can be used when
* solving problems incrementally.
*/
template<class FG>
void augment(const FG& factors);
/**
* Remove entries corresponding to the specified factors. NOTE: We intentionally do not decrement
* nFactors_ because the factor indices need to remain consistent. Removing factors from a factor
* graph does not shift the indices of other factors. Also, we keep nFactors_ one greater than
* the highest-numbered factor referenced in a VariableIndex.
*
* @param indices The indices of the factors to remove, which must match \c factors
* @param factors The factors being removed, which must symbolically correspond exactly to the
* factors with the specified \c indices that were added.
*/
template<typename ITERATOR, class FG>
void remove(ITERATOR firstFactor, ITERATOR lastFactor, const FG& factors);
/** Remove unused empty variables at the end of the ordering (in debug mode
* verifies they are empty).
* @param nToRemove The number of unused variables at the end to remove
*/
template<typename ITERATOR>
void removeUnusedVariables(ITERATOR firstKey, ITERATOR lastKey);
/** Iterator to the first variable entry */
const_iterator begin() const { return index_.begin(); }
/** Iterator to the first variable entry */
const_iterator end() const { return index_.end(); }
/** Find the iterator for the requested variable entry */
const_iterator find(Key key) const { return index_.find(key); }
protected:
Factor_iterator factorsBegin(Index variable) { return internalAt(variable).begin(); }
Factor_iterator factorsEnd(Index variable) { return internalAt(variable).end(); }
Factor_const_iterator factorsBegin(Index variable) const { return internalAt(variable).begin(); }
Factor_const_iterator factorsEnd(Index variable) const { return internalAt(variable).end(); }
/// Internal version of 'at' that asserts existence
const Factors& internalAt(Key variable) const {
const KeyMap::const_iterator item = index_.find(variable);
assert(item != index_.end());
return item->second; }
/// Internal version of 'at' that asserts existence
Factors& internalAt(Key variable) {
const KeyMap::iterator item = index_.find(variable);
assert(item != index_.end());
return item->second; }
/// @}
};
}
#include <gtsam/inference/VariableIndexUnordered-inl.h>

View File

@ -0,0 +1,123 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testVariableIndex.cpp
* @brief
* @author Richard Roberts
* @date Sep 26, 2010
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/inference/VariableIndexUnordered.h>
#include <gtsam/inference/SymbolicFactorGraph.h>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
TEST(VariableIndexUnordered, augment) {
SymbolicFactorGraphUnordered fg1, fg2;
fg1.push_factor(0, 1);
fg1.push_factor(0, 2);
fg1.push_factor(5, 9);
fg1.push_factor(2, 3);
fg2.push_factor(1, 3);
fg2.push_factor(2, 4);
fg2.push_factor(3, 5);
fg2.push_factor(5, 6);
SymbolicFactorGraph fgCombined; fgCombined.push_back(fg1); fgCombined.push_back(fg2);
VariableIndex expected(fgCombined);
VariableIndex actual(fg1);
actual.augment(fg2);
LONGS_EQUAL(16, actual.nEntries());
LONGS_EQUAL(8, actual.nFactors());
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST(VariableIndex, remove) {
SymbolicFactorGraph fg1, fg2;
fg1.push_factor(0, 1);
fg1.push_factor(0, 2);
fg1.push_factor(5, 9);
fg1.push_factor(2, 3);
fg2.push_factor(1, 3);
fg2.push_factor(2, 4);
fg2.push_factor(3, 5);
fg2.push_factor(5, 6);
SymbolicFactorGraph fgCombined; fgCombined.push_back(fg1); fgCombined.push_back(fg2);
// Create a factor graph containing only the factors from fg2 and with null
// factors in the place of those of fg1, so that the factor indices are correct.
SymbolicFactorGraph fg2removed(fgCombined);
fg2removed.remove(0); fg2removed.remove(1); fg2removed.remove(2); fg2removed.remove(3);
// The expected VariableIndex has the same factor indices as fgCombined but
// with entries from fg1 removed, and still has all 10 variables.
VariableIndex expected(fg2removed, 10);
VariableIndex actual(fgCombined);
vector<size_t> indices;
indices.push_back(0); indices.push_back(1); indices.push_back(2); indices.push_back(3);
actual.remove(indices, fg1);
CHECK(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST(VariableIndex, deep_copy) {
SymbolicFactorGraph fg1, fg2;
fg1.push_factor(0, 1);
fg1.push_factor(0, 2);
fg1.push_factor(5, 9);
fg1.push_factor(2, 3);
fg2.push_factor(1, 3);
fg2.push_factor(2, 4);
fg2.push_factor(3, 5);
fg2.push_factor(5, 6);
// Create original graph and VariableIndex
SymbolicFactorGraph fgOriginal; fgOriginal.push_back(fg1); fgOriginal.push_back(fg2);
VariableIndex original(fgOriginal);
VariableIndex expectedOriginal(fgOriginal);
// Create a factor graph containing only the factors from fg2 and with null
// factors in the place of those of fg1, so that the factor indices are correct.
SymbolicFactorGraph fg2removed(fgOriginal);
fg2removed.remove(0); fg2removed.remove(1); fg2removed.remove(2); fg2removed.remove(3);
VariableIndex expectedRemoved(fg2removed);
// Create a clone and modify the clone - the original should not change
VariableIndex clone(original);
vector<size_t> indices;
indices.push_back(0); indices.push_back(1); indices.push_back(2); indices.push_back(3);
clone.remove(indices, fg1);
// When modifying the clone, the original should have stayed the same
EXPECT(assert_equal(expectedOriginal, original));
EXPECT(assert_equal(expectedRemoved, clone));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */