Updated documentation on SimpleRotation example
parent
e3a6282ff8
commit
ff522a73c0
|
|
@ -17,20 +17,41 @@
|
||||||
* @author Alex Cunningham
|
* @author Alex Cunningham
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <cmath>
|
/**
|
||||||
#include <iostream>
|
* This example will perform a relatively trivial optimization on
|
||||||
#include <gtsam/slam/PriorFactor.h>
|
* a single variable with a single factor.
|
||||||
|
*/
|
||||||
|
|
||||||
|
// In this example, a 2D rotation will be used as the variable of interest
|
||||||
#include <gtsam/geometry/Rot2.h>
|
#include <gtsam/geometry/Rot2.h>
|
||||||
#include <gtsam/linear/NoiseModel.h>
|
|
||||||
|
// Each variable in the system (poses) must be identified with a unique key.
|
||||||
|
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
|
||||||
|
// Here we will use symbols
|
||||||
#include <gtsam/nonlinear/Symbol.h>
|
#include <gtsam/nonlinear/Symbol.h>
|
||||||
|
|
||||||
|
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
|
||||||
|
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
|
||||||
|
// We will apply a simple prior on the rotation
|
||||||
|
#include <gtsam/slam/PriorFactor.h>
|
||||||
|
|
||||||
|
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
|
||||||
|
// are nonlinear factors, we will need a Nonlinear Factor Graph.
|
||||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||||
|
|
||||||
|
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
|
||||||
|
// nonlinear functions around an initial linearization point, then solve the linear system
|
||||||
|
// to update the linearization point. This happens repeatedly until the solver converges
|
||||||
|
// to a consistent set of variable values. This requires us to specify an initial guess
|
||||||
|
// for each variable, held in a Values container.
|
||||||
|
#include <gtsam/nonlinear/Values.h>
|
||||||
|
|
||||||
|
// Finally, once all of the factors have been added to our factor graph, we will want to
|
||||||
|
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
|
||||||
|
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
|
||||||
|
// standard Levenberg-Marquardt solver
|
||||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||||
|
|
||||||
/*
|
|
||||||
* TODO: make factors independent of RotValues
|
|
||||||
* TODO: make toplevel documentation
|
|
||||||
* TODO: Clean up nonlinear optimization API
|
|
||||||
*/
|
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
|
|
@ -40,12 +61,7 @@ const double degree = M_PI / 180;
|
||||||
int main() {
|
int main() {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This example will perform a relatively trivial optimization on
|
* Step 1: Create a factor to express a unary constraint
|
||||||
* a single variable with a single factor.
|
|
||||||
*/
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Step 1: create a factor on to express a unary constraint
|
|
||||||
* The "prior" in this case is the measurement from a sensor,
|
* The "prior" in this case is the measurement from a sensor,
|
||||||
* with a model of the noise on the measurement.
|
* with a model of the noise on the measurement.
|
||||||
*
|
*
|
||||||
|
|
@ -60,12 +76,12 @@ int main() {
|
||||||
*/
|
*/
|
||||||
Rot2 prior = Rot2::fromAngle(30 * degree);
|
Rot2 prior = Rot2::fromAngle(30 * degree);
|
||||||
prior.print("goal angle");
|
prior.print("goal angle");
|
||||||
SharedDiagonal model = noiseModel::Isotropic::Sigma(1, 1 * degree);
|
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(1, 1 * degree);
|
||||||
Symbol key('x',1);
|
Symbol key('x',1);
|
||||||
PriorFactor<Rot2> factor(key, prior, model);
|
PriorFactor<Rot2> factor(key, prior, model);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Step 2: create a graph container and add the factor to it
|
* Step 2: Create a graph container and add the factor to it
|
||||||
* Before optimizing, all factors need to be added to a Graph container,
|
* Before optimizing, all factors need to be added to a Graph container,
|
||||||
* which provides the necessary top-level functionality for defining a
|
* which provides the necessary top-level functionality for defining a
|
||||||
* system of constraints.
|
* system of constraints.
|
||||||
|
|
@ -78,7 +94,7 @@ int main() {
|
||||||
graph.print("full graph");
|
graph.print("full graph");
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Step 3: create an initial estimate
|
* Step 3: Create an initial estimate
|
||||||
* An initial estimate of the solution for the system is necessary to
|
* An initial estimate of the solution for the system is necessary to
|
||||||
* start optimization. This system state is the "RotValues" structure,
|
* start optimization. This system state is the "RotValues" structure,
|
||||||
* which is similar in structure to a STL map, in that it maps
|
* which is similar in structure to a STL map, in that it maps
|
||||||
|
|
@ -98,7 +114,7 @@ int main() {
|
||||||
initial.print("initial estimate");
|
initial.print("initial estimate");
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Step 4: optimize
|
* Step 4: Optimize
|
||||||
* After formulating the problem with a graph of constraints
|
* After formulating the problem with a graph of constraints
|
||||||
* and an initial estimate, executing optimization is as simple
|
* and an initial estimate, executing optimization is as simple
|
||||||
* as calling a general optimization function with the graph and
|
* as calling a general optimization function with the graph and
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue