Merge pull request #1781 from borglab/discrete-improv
commit
feab2a2d20
|
|
@ -18,6 +18,8 @@
|
|||
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/discrete/DiscreteConditional.h>
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/discrete/DiscreteLookupDAG.h>
|
||||
#include <gtsam/inference/FactorGraph-inst.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
|
@ -56,7 +58,8 @@ DiscreteValues DiscreteBayesNet::sample() const {
|
|||
|
||||
DiscreteValues DiscreteBayesNet::sample(DiscreteValues result) const {
|
||||
// sample each node in turn in topological sort order (parents first)
|
||||
for (auto it = std::make_reverse_iterator(end()); it != std::make_reverse_iterator(begin()); ++it) {
|
||||
for (auto it = std::make_reverse_iterator(end());
|
||||
it != std::make_reverse_iterator(begin()); ++it) {
|
||||
(*it)->sampleInPlace(&result);
|
||||
}
|
||||
return result;
|
||||
|
|
|
|||
|
|
@ -235,16 +235,19 @@ DecisionTreeFactor::shared_ptr DiscreteConditional::likelihood(
|
|||
}
|
||||
|
||||
/* ************************************************************************** */
|
||||
size_t DiscreteConditional::argmax() const {
|
||||
size_t DiscreteConditional::argmax(const DiscreteValues& parentsValues) const {
|
||||
ADT pFS = choose(parentsValues, true); // P(F|S=parentsValues)
|
||||
|
||||
// Initialize
|
||||
size_t maxValue = 0;
|
||||
double maxP = 0;
|
||||
DiscreteValues values = parentsValues;
|
||||
|
||||
assert(nrFrontals() == 1);
|
||||
assert(nrParents() == 0);
|
||||
DiscreteValues frontals;
|
||||
Key j = firstFrontalKey();
|
||||
for (size_t value = 0; value < cardinality(j); value++) {
|
||||
frontals[j] = value;
|
||||
double pValueS = (*this)(frontals);
|
||||
values[j] = value;
|
||||
double pValueS = (*this)(values);
|
||||
// Update MPE solution if better
|
||||
if (pValueS > maxP) {
|
||||
maxP = pValueS;
|
||||
|
|
@ -459,7 +462,7 @@ string DiscreteConditional::html(const KeyFormatter& keyFormatter,
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
double DiscreteConditional::evaluate(const HybridValues& x) const{
|
||||
double DiscreteConditional::evaluate(const HybridValues& x) const {
|
||||
return this->evaluate(x.discrete());
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -18,9 +18,9 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/inference/Conditional-inst.h>
|
||||
#include <gtsam/discrete/DecisionTreeFactor.h>
|
||||
#include <gtsam/discrete/Signature.h>
|
||||
#include <gtsam/inference/Conditional-inst.h>
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
|
@ -159,9 +159,7 @@ class GTSAM_EXPORT DiscreteConditional
|
|||
/// @{
|
||||
|
||||
/// Log-probability is just -error(x).
|
||||
double logProbability(const DiscreteValues& x) const {
|
||||
return -error(x);
|
||||
}
|
||||
double logProbability(const DiscreteValues& x) const { return -error(x); }
|
||||
|
||||
/// print index signature only
|
||||
void printSignature(
|
||||
|
|
@ -214,10 +212,11 @@ class GTSAM_EXPORT DiscreteConditional
|
|||
size_t sample() const;
|
||||
|
||||
/**
|
||||
* @brief Return assignment that maximizes distribution.
|
||||
* @return Optimal assignment (1 frontal variable).
|
||||
* @brief Return assignment for single frontal variable that maximizes value.
|
||||
* @param parentsValues Known assignments for the parents.
|
||||
* @return maximizing assignment for the frontal variable.
|
||||
*/
|
||||
size_t argmax() const;
|
||||
size_t argmax(const DiscreteValues& parentsValues = DiscreteValues()) const;
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Interface
|
||||
|
|
@ -244,7 +243,6 @@ class GTSAM_EXPORT DiscreteConditional
|
|||
std::string html(const KeyFormatter& keyFormatter = DefaultKeyFormatter,
|
||||
const Names& names = {}) const override;
|
||||
|
||||
|
||||
/// @}
|
||||
/// @name HybridValues methods.
|
||||
/// @{
|
||||
|
|
|
|||
|
|
@ -119,7 +119,8 @@ DiscreteLookupDAG DiscreteLookupDAG::FromBayesNet(
|
|||
|
||||
DiscreteValues DiscreteLookupDAG::argmax(DiscreteValues result) const {
|
||||
// Argmax each node in turn in topological sort order (parents first).
|
||||
for (auto it = std::make_reverse_iterator(end()); it != std::make_reverse_iterator(begin()); ++it) {
|
||||
for (auto it = std::make_reverse_iterator(end());
|
||||
it != std::make_reverse_iterator(begin()); ++it) {
|
||||
// dereference to get the sharedFactor to the lookup table
|
||||
(*it)->argmaxInPlace(&result);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -14,6 +14,9 @@ class DiscreteKeys {
|
|||
bool empty() const;
|
||||
gtsam::DiscreteKey at(size_t n) const;
|
||||
void push_back(const gtsam::DiscreteKey& point_pair);
|
||||
void print(const std::string& s = "",
|
||||
const gtsam::KeyFormatter& keyFormatter =
|
||||
gtsam::DefaultKeyFormatter) const;
|
||||
};
|
||||
|
||||
// DiscreteValues is added in specializations/discrete.h as a std::map
|
||||
|
|
@ -104,6 +107,9 @@ virtual class DiscreteConditional : gtsam::DecisionTreeFactor {
|
|||
DiscreteConditional(const gtsam::DecisionTreeFactor& joint,
|
||||
const gtsam::DecisionTreeFactor& marginal,
|
||||
const gtsam::Ordering& orderedKeys);
|
||||
DiscreteConditional(const gtsam::DiscreteKey& key,
|
||||
const gtsam::DiscreteKeys& parents,
|
||||
const std::vector<double>& table);
|
||||
|
||||
// Standard interface
|
||||
double logNormalizationConstant() const;
|
||||
|
|
@ -131,6 +137,7 @@ virtual class DiscreteConditional : gtsam::DecisionTreeFactor {
|
|||
size_t sample(size_t value) const;
|
||||
size_t sample() const;
|
||||
void sampleInPlace(gtsam::DiscreteValues @parentsValues) const;
|
||||
size_t argmax(const gtsam::DiscreteValues& parents) const;
|
||||
|
||||
// Markdown and HTML
|
||||
string markdown(const gtsam::KeyFormatter& keyFormatter =
|
||||
|
|
@ -159,7 +166,6 @@ virtual class DiscreteDistribution : gtsam::DiscreteConditional {
|
|||
gtsam::DefaultKeyFormatter) const;
|
||||
double operator()(size_t value) const;
|
||||
std::vector<double> pmf() const;
|
||||
size_t argmax() const;
|
||||
};
|
||||
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
|
|
|
|||
|
|
@ -16,14 +16,13 @@
|
|||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/Vector.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/discrete/DiscreteMarginals.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/Vector.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
|
@ -43,8 +42,7 @@ TEST(DiscreteBayesNet, bayesNet) {
|
|||
DiscreteKey Parent(0, 2), Child(1, 2);
|
||||
|
||||
auto prior = std::make_shared<DiscreteConditional>(Parent % "6/4");
|
||||
CHECK(assert_equal(ADT({Parent}, "0.6 0.4"),
|
||||
(ADT)*prior));
|
||||
CHECK(assert_equal(ADT({Parent}, "0.6 0.4"), (ADT)*prior));
|
||||
bayesNet.push_back(prior);
|
||||
|
||||
auto conditional =
|
||||
|
|
|
|||
|
|
@ -289,6 +289,35 @@ TEST(DiscreteConditional, choose) {
|
|||
EXPECT(assert_equal(expected3, *actual3, 1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Check argmax on P(C|D) and P(D), plus tie-breaking for P(B)
|
||||
TEST(DiscreteConditional, Argmax) {
|
||||
DiscreteKey B(2, 2), C(2, 2), D(4, 2);
|
||||
DiscreteConditional B_prior(D, "1/1");
|
||||
DiscreteConditional D_prior(D, "1/3");
|
||||
DiscreteConditional C_given_D((C | D) = "1/4 1/1");
|
||||
|
||||
// Case 1: Tie breaking
|
||||
size_t actual1 = B_prior.argmax();
|
||||
// In the case of ties, the first value is chosen.
|
||||
EXPECT_LONGS_EQUAL(0, actual1);
|
||||
// Case 2: No parents
|
||||
size_t actual2 = D_prior.argmax();
|
||||
// Selects 1 since it has 0.75 probability
|
||||
EXPECT_LONGS_EQUAL(1, actual2);
|
||||
|
||||
// Case 3: Given parent values
|
||||
DiscreteValues given;
|
||||
given[D.first] = 1;
|
||||
size_t actual3 = C_given_D.argmax(given);
|
||||
// Should be 0 since D=1 gives 0.5/0.5
|
||||
EXPECT_LONGS_EQUAL(0, actual3);
|
||||
|
||||
given[D.first] = 0;
|
||||
size_t actual4 = C_given_D.argmax(given);
|
||||
EXPECT_LONGS_EQUAL(1, actual4);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Check markdown representation looks as expected, no parents.
|
||||
TEST(DiscreteConditional, markdown_prior) {
|
||||
|
|
|
|||
Loading…
Reference in New Issue