Remove raw memory access codes
parent
84f6018481
commit
fe7fc8a6ef
|
@ -460,25 +460,6 @@ VectorValues JacobianFactor::hessianDiagonal() const {
|
|||
return d;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// TODO: currently assumes all variables of the same size 9 and keys arranged from 0 to n
|
||||
void JacobianFactor::hessianDiagonal(double* d) const {
|
||||
|
||||
// Use eigen magic to access raw memory
|
||||
typedef Eigen::Matrix<double, 9, 1> DVector;
|
||||
typedef Eigen::Map<DVector> DMap;
|
||||
|
||||
// Loop over all variables in the factor
|
||||
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
|
||||
// Get the diagonal block, and insert its diagonal
|
||||
DVector dj;
|
||||
for (size_t k = 0; k < 9; ++k)
|
||||
dj(k) = Ab_(j).col(k).squaredNorm();
|
||||
|
||||
DMap(d + 9 * j) += dj;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
map<Key, Matrix> JacobianFactor::hessianBlockDiagonal() const {
|
||||
map<Key, Matrix> blocks;
|
||||
|
@ -528,40 +509,6 @@ void JacobianFactor::multiplyHessianAdd(double alpha, const VectorValues& x,
|
|||
transposeMultiplyAdd(alpha, Ax, y);
|
||||
}
|
||||
|
||||
void JacobianFactor::multiplyHessianAdd(double alpha, const double* x,
|
||||
double* y, std::vector<size_t> keys) const {
|
||||
|
||||
// Use eigen magic to access raw memory
|
||||
typedef Eigen::Matrix<double, Eigen::Dynamic, 1> DVector;
|
||||
typedef Eigen::Map<DVector> DMap;
|
||||
typedef Eigen::Map<const DVector> ConstDMap;
|
||||
|
||||
if (empty())
|
||||
return;
|
||||
Vector Ax = zero(Ab_.rows());
|
||||
|
||||
// Just iterate over all A matrices and multiply in correct config part
|
||||
for (size_t pos = 0; pos < size(); ++pos)
|
||||
Ax += Ab_(pos)
|
||||
* ConstDMap(x + keys[keys_[pos]],
|
||||
keys[keys_[pos] + 1] - keys[keys_[pos]]);
|
||||
|
||||
// Deal with noise properly, need to Double* whiten as we are dividing by variance
|
||||
if (model_) {
|
||||
model_->whitenInPlace(Ax);
|
||||
model_->whitenInPlace(Ax);
|
||||
}
|
||||
|
||||
// multiply with alpha
|
||||
Ax *= alpha;
|
||||
|
||||
// Again iterate over all A matrices and insert Ai^e into y
|
||||
for (size_t pos = 0; pos < size(); ++pos)
|
||||
DMap(y + keys[keys_[pos]], keys[keys_[pos] + 1] - keys[keys_[pos]]) += Ab_(
|
||||
pos).transpose() * Ax;
|
||||
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues JacobianFactor::gradientAtZero() const {
|
||||
VectorValues g;
|
||||
|
@ -573,11 +520,6 @@ VectorValues JacobianFactor::gradientAtZero() const {
|
|||
return g;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void JacobianFactor::gradientAtZero(double* d) const {
|
||||
//throw std::runtime_error("gradientAtZero not implemented for Jacobian factor");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
pair<Matrix, Vector> JacobianFactor::jacobian() const {
|
||||
pair<Matrix, Vector> result = jacobianUnweighted();
|
||||
|
|
|
@ -185,9 +185,6 @@ namespace gtsam {
|
|||
/// Return the diagonal of the Hessian for this factor
|
||||
virtual VectorValues hessianDiagonal() const;
|
||||
|
||||
/// Raw memory access version of hessianDiagonal
|
||||
virtual void hessianDiagonal(double* d) const;
|
||||
|
||||
/// Return the block diagonal of the Hessian for this factor
|
||||
virtual std::map<Key,Matrix> hessianBlockDiagonal() const;
|
||||
|
||||
|
@ -279,16 +276,9 @@ namespace gtsam {
|
|||
/** y += alpha * A'*A*x */
|
||||
void multiplyHessianAdd(double alpha, const VectorValues& x, VectorValues& y) const;
|
||||
|
||||
void multiplyHessianAdd(double alpha, const double* x, double* y, std::vector<size_t> keys) const;
|
||||
|
||||
void multiplyHessianAdd(double alpha, const double* x, double* y) const {};
|
||||
|
||||
/// A'*b for Jacobian
|
||||
VectorValues gradientAtZero() const;
|
||||
|
||||
/* ************************************************************************* */
|
||||
virtual void gradientAtZero(double* d) const;
|
||||
|
||||
/** Return a whitened version of the factor, i.e. with unit diagonal noise model. */
|
||||
JacobianFactor whiten() const;
|
||||
|
||||
|
|
Loading…
Reference in New Issue