Extra constructor with calibration, unit tested
parent
4f81d110f1
commit
fe3177c257
|
@ -226,6 +226,19 @@ public:
|
|||
EssentialMatrixFactor2(key1, key2, pA, pB, model), cRb_(cRb) {
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param pA point in first camera, in pixel coordinates
|
||||
* @param pB point in second camera, in pixel coordinates
|
||||
* @param K calibration object, will be used only in constructor
|
||||
* @param model noise model should be in pixels, as well
|
||||
*/
|
||||
template<class CALIBRATION>
|
||||
EssentialMatrixFactor3(Key key1, Key key2, const Point2& pA, const Point2& pB,
|
||||
const Rot3& cRb, const SharedNoiseModel& model, boost::shared_ptr<CALIBRATION> K) :
|
||||
EssentialMatrixFactor2(key1, key2, pA, pB, model, K), cRb_(cRb) {
|
||||
}
|
||||
|
||||
/// @return a deep copy of this factor
|
||||
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
||||
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
||||
|
|
|
@ -25,6 +25,10 @@ noiseModel::Isotropic::shared_ptr model1 = noiseModel::Isotropic::Sigma(1,
|
|||
// Noise model for second type of factor is evaluating pixel coordinates
|
||||
noiseModel::Unit::shared_ptr model2 = noiseModel::Unit::Create(2);
|
||||
|
||||
// The rotation between body and camera is:
|
||||
gtsam::Point3 bX(1, 0, 0), bY(0, 1, 0), bZ(0, 0, 1);
|
||||
gtsam::Rot3 cRb = gtsam::Rot3(bX, bZ, -bY).inverse();
|
||||
|
||||
namespace example1 {
|
||||
|
||||
const string filename = findExampleDataFile("5pointExample1.txt");
|
||||
|
@ -32,6 +36,7 @@ SfM_data data;
|
|||
bool readOK = readBAL(filename, data);
|
||||
Rot3 c1Rc2 = data.cameras[1].pose().rotation();
|
||||
Point3 c1Tc2 = data.cameras[1].pose().translation();
|
||||
PinholeCamera<Cal3_S2> camera2(data.cameras[1].pose(),Cal3_S2());
|
||||
EssentialMatrix trueE(c1Rc2, c1Tc2);
|
||||
double baseline = 0.1; // actual baseline of the camera
|
||||
|
||||
|
@ -149,8 +154,8 @@ TEST (EssentialMatrixFactor2, factor) {
|
|||
EssentialMatrixFactor2 factor(100, i, pA(i), pB(i), model2);
|
||||
|
||||
// Check evaluation
|
||||
Point3 P1 = data.tracks[i].p, P2 = data.cameras[1].pose().transform_to(P1);
|
||||
const Point2 pi = SimpleCamera::project_to_camera(P2);
|
||||
Point3 P1 = data.tracks[i].p;
|
||||
const Point2 pi = camera2.project(P1);
|
||||
Point2 reprojectionError(pi - pB(i));
|
||||
Vector expected = reprojectionError.vector();
|
||||
|
||||
|
@ -213,12 +218,8 @@ TEST (EssentialMatrixFactor2, minimization) {
|
|||
// body coordinate frame B which is rotated with respect to the camera
|
||||
// frame C, via the rotation bRc.
|
||||
|
||||
// The rotation between body and camera is:
|
||||
gtsam::Point3 bX(1, 0, 0), bY(0, 1, 0), bZ(0, 0, 1);
|
||||
gtsam::Rot3 bRc(bX, bZ, -bY), cRb = bRc.inverse();
|
||||
|
||||
// The "true E" in the body frame is then
|
||||
EssentialMatrix bodyE = bRc * trueE;
|
||||
EssentialMatrix bodyE = cRb.inverse() * trueE;
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor3, factor) {
|
||||
|
@ -227,8 +228,8 @@ TEST (EssentialMatrixFactor3, factor) {
|
|||
EssentialMatrixFactor3 factor(100, i, pA(i), pB(i), cRb, model2);
|
||||
|
||||
// Check evaluation
|
||||
Point3 P1 = data.tracks[i].p, P2 = data.cameras[1].pose().transform_to(P1);
|
||||
const Point2 pi = SimpleCamera::project_to_camera(P2);
|
||||
Point3 P1 = data.tracks[i].p;
|
||||
const Point2 pi = camera2.project(P1);
|
||||
Point2 reprojectionError(pi - pB(i));
|
||||
Vector expected = reprojectionError.vector();
|
||||
|
||||
|
@ -258,7 +259,16 @@ TEST (EssentialMatrixFactor3, minimization) {
|
|||
NonlinearFactorGraph graph;
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
// but now we specify the rotation bRc
|
||||
graph.add(EssentialMatrixFactor3(100, i, pA(i), pB(i), bRc, model2));
|
||||
graph.add(EssentialMatrixFactor3(100, i, pA(i), pB(i), cRb, model2));
|
||||
|
||||
// Check error at ground truth
|
||||
Values truth;
|
||||
truth.insert(100, bodyE);
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
Point3 P1 = data.tracks[i].p;
|
||||
truth.insert(i, LieScalar(baseline / P1.z()));
|
||||
}
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
|
||||
}
|
||||
|
||||
} // namespace example1
|
||||
|
@ -272,6 +282,8 @@ SfM_data data;
|
|||
bool readOK = readBAL(filename, data);
|
||||
Rot3 aRb = data.cameras[1].pose().rotation();
|
||||
Point3 aTb = data.cameras[1].pose().translation();
|
||||
EssentialMatrix trueE(aRb, aTb);
|
||||
|
||||
double baseline = 10; // actual baseline of the camera
|
||||
|
||||
Point2 pA(size_t i) {
|
||||
|
@ -283,6 +295,7 @@ Point2 pB(size_t i) {
|
|||
|
||||
boost::shared_ptr<Cal3Bundler> //
|
||||
K = boost::make_shared<Cal3Bundler>(500, 0, 0);
|
||||
PinholeCamera<Cal3Bundler> camera2(data.cameras[1].pose(),*K);
|
||||
|
||||
Vector vA(size_t i) {
|
||||
Point2 xy = K->calibrate(pA(i));
|
||||
|
@ -294,7 +307,7 @@ Vector vB(size_t i) {
|
|||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor, extraTest) {
|
||||
TEST (EssentialMatrixFactor, extraMinimization) {
|
||||
// Additional test with camera moving in positive X direction
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
|
@ -303,7 +316,6 @@ TEST (EssentialMatrixFactor, extraTest) {
|
|||
|
||||
// Check error at ground truth
|
||||
Values truth;
|
||||
EssentialMatrix trueE(aRb, aTb);
|
||||
truth.insert(1, trueE);
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
|
||||
|
||||
|
@ -334,6 +346,36 @@ TEST (EssentialMatrixFactor, extraTest) {
|
|||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor2, extraTest) {
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
EssentialMatrixFactor2 factor(100, i, pA(i), pB(i), model2, K);
|
||||
|
||||
// Check evaluation
|
||||
Point3 P1 = data.tracks[i].p;
|
||||
const Point2 pi = camera2.project(P1);
|
||||
Point2 reprojectionError(pi - pB(i));
|
||||
Vector expected = reprojectionError.vector();
|
||||
|
||||
Matrix Hactual1, Hactual2;
|
||||
LieScalar d(baseline / P1.z());
|
||||
Vector actual = factor.evaluateError(trueE, d, Hactual1, Hactual2);
|
||||
EXPECT(assert_equal(expected, actual, 1e-7));
|
||||
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
Matrix Hexpected1, Hexpected2;
|
||||
boost::function<Vector(const EssentialMatrix&, const LieScalar&)> f =
|
||||
boost::bind(&EssentialMatrixFactor2::evaluateError, &factor, _1, _2,
|
||||
boost::none, boost::none);
|
||||
Hexpected1 = numericalDerivative21<EssentialMatrix>(f, trueE, d);
|
||||
Hexpected2 = numericalDerivative22<EssentialMatrix>(f, trueE, d);
|
||||
|
||||
// Verify the Jacobian is correct
|
||||
EXPECT(assert_equal(Hexpected1, Hactual1, 1e-6));
|
||||
EXPECT(assert_equal(Hexpected2, Hactual2, 1e-8));
|
||||
}
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor2, extraMinimization) {
|
||||
// Additional test with camera moving in positive X direction
|
||||
|
||||
// We start with a factor graph and add constraints to it
|
||||
|
@ -344,7 +386,6 @@ TEST (EssentialMatrixFactor2, extraTest) {
|
|||
|
||||
// Check error at ground truth
|
||||
Values truth;
|
||||
EssentialMatrix trueE(aRb, aTb);
|
||||
truth.insert(100, trueE);
|
||||
for (size_t i = 0; i < data.number_tracks(); i++) {
|
||||
Point3 P1 = data.tracks[i].p;
|
||||
|
@ -368,6 +409,40 @@ TEST (EssentialMatrixFactor2, extraTest) {
|
|||
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor3, extraTest) {
|
||||
|
||||
// The "true E" in the body frame is
|
||||
EssentialMatrix bodyE = cRb.inverse() * trueE;
|
||||
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
EssentialMatrixFactor3 factor(100, i, pA(i), pB(i), cRb, model2, K);
|
||||
|
||||
// Check evaluation
|
||||
Point3 P1 = data.tracks[i].p;
|
||||
const Point2 pi = camera2.project(P1);
|
||||
Point2 reprojectionError(pi - pB(i));
|
||||
Vector expected = reprojectionError.vector();
|
||||
|
||||
Matrix Hactual1, Hactual2;
|
||||
LieScalar d(baseline / P1.z());
|
||||
Vector actual = factor.evaluateError(bodyE, d, Hactual1, Hactual2);
|
||||
EXPECT(assert_equal(expected, actual, 1e-7));
|
||||
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
Matrix Hexpected1, Hexpected2;
|
||||
boost::function<Vector(const EssentialMatrix&, const LieScalar&)> f =
|
||||
boost::bind(&EssentialMatrixFactor3::evaluateError, &factor, _1, _2,
|
||||
boost::none, boost::none);
|
||||
Hexpected1 = numericalDerivative21<EssentialMatrix>(f, bodyE, d);
|
||||
Hexpected2 = numericalDerivative22<EssentialMatrix>(f, bodyE, d);
|
||||
|
||||
// Verify the Jacobian is correct
|
||||
EXPECT(assert_equal(Hexpected1, Hactual1, 1e-6));
|
||||
EXPECT(assert_equal(Hexpected2, Hactual2, 1e-8));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace example2
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue