Replaced expmap with retract in kalman filter example

release/4.3a0
Alex Cunningham 2011-11-05 03:10:49 +00:00
parent 97a82add25
commit fd601b55d8
1 changed files with 6 additions and 6 deletions

View File

@ -118,7 +118,7 @@ int main() {
// Extract the current estimate of x1,P1 from the Bayes Network
VectorValues result = optimize(*linearBayesNet);
Point2 x1_predict = linearizationPoints[x1].expmap(result[ordering->at(x1)]);
Point2 x1_predict = linearizationPoints[x1].retract(result[ordering->at(x1)]);
x1_predict.print("X1 Predict");
// Update the new linearization point to the new estimate
@ -190,7 +190,7 @@ int main() {
// Extract the current estimate of x1 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x1_update = linearizationPoints[x1].expmap(result[ordering->at(x1)]);
Point2 x1_update = linearizationPoints[x1].retract(result[ordering->at(x1)]);
x1_update.print("X1 Update");
// Update the linearization point to the new estimate
@ -237,7 +237,7 @@ int main() {
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x2_predict = linearizationPoints[x2].expmap(result[ordering->at(x2)]);
Point2 x2_predict = linearizationPoints[x2].retract(result[ordering->at(x2)]);
x2_predict.print("X2 Predict");
// Update the linearization point to the new estimate
@ -281,7 +281,7 @@ int main() {
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x2_update = linearizationPoints[x2].expmap(result[ordering->at(x2)]);
Point2 x2_update = linearizationPoints[x2].retract(result[ordering->at(x2)]);
x2_update.print("X2 Update");
// Update the linearization point to the new estimate
@ -326,7 +326,7 @@ int main() {
// Extract the current estimate of x3 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x3_predict = linearizationPoints[x3].expmap(result[ordering->at(x3)]);
Point2 x3_predict = linearizationPoints[x3].retract(result[ordering->at(x3)]);
x3_predict.print("X3 Predict");
// Update the linearization point to the new estimate
@ -370,7 +370,7 @@ int main() {
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x3_update = linearizationPoints[x3].expmap(result[ordering->at(x3)]);
Point2 x3_update = linearizationPoints[x3].retract(result[ordering->at(x3)]);
x3_update.print("X3 Update");
// Update the linearization point to the new estimate