Replaced expmap with retract in kalman filter example
parent
97a82add25
commit
fd601b55d8
|
@ -118,7 +118,7 @@ int main() {
|
|||
|
||||
// Extract the current estimate of x1,P1 from the Bayes Network
|
||||
VectorValues result = optimize(*linearBayesNet);
|
||||
Point2 x1_predict = linearizationPoints[x1].expmap(result[ordering->at(x1)]);
|
||||
Point2 x1_predict = linearizationPoints[x1].retract(result[ordering->at(x1)]);
|
||||
x1_predict.print("X1 Predict");
|
||||
|
||||
// Update the new linearization point to the new estimate
|
||||
|
@ -190,7 +190,7 @@ int main() {
|
|||
|
||||
// Extract the current estimate of x1 from the Bayes Network
|
||||
result = optimize(*linearBayesNet);
|
||||
Point2 x1_update = linearizationPoints[x1].expmap(result[ordering->at(x1)]);
|
||||
Point2 x1_update = linearizationPoints[x1].retract(result[ordering->at(x1)]);
|
||||
x1_update.print("X1 Update");
|
||||
|
||||
// Update the linearization point to the new estimate
|
||||
|
@ -237,7 +237,7 @@ int main() {
|
|||
|
||||
// Extract the current estimate of x2 from the Bayes Network
|
||||
result = optimize(*linearBayesNet);
|
||||
Point2 x2_predict = linearizationPoints[x2].expmap(result[ordering->at(x2)]);
|
||||
Point2 x2_predict = linearizationPoints[x2].retract(result[ordering->at(x2)]);
|
||||
x2_predict.print("X2 Predict");
|
||||
|
||||
// Update the linearization point to the new estimate
|
||||
|
@ -281,7 +281,7 @@ int main() {
|
|||
|
||||
// Extract the current estimate of x2 from the Bayes Network
|
||||
result = optimize(*linearBayesNet);
|
||||
Point2 x2_update = linearizationPoints[x2].expmap(result[ordering->at(x2)]);
|
||||
Point2 x2_update = linearizationPoints[x2].retract(result[ordering->at(x2)]);
|
||||
x2_update.print("X2 Update");
|
||||
|
||||
// Update the linearization point to the new estimate
|
||||
|
@ -326,7 +326,7 @@ int main() {
|
|||
|
||||
// Extract the current estimate of x3 from the Bayes Network
|
||||
result = optimize(*linearBayesNet);
|
||||
Point2 x3_predict = linearizationPoints[x3].expmap(result[ordering->at(x3)]);
|
||||
Point2 x3_predict = linearizationPoints[x3].retract(result[ordering->at(x3)]);
|
||||
x3_predict.print("X3 Predict");
|
||||
|
||||
// Update the linearization point to the new estimate
|
||||
|
@ -370,7 +370,7 @@ int main() {
|
|||
|
||||
// Extract the current estimate of x2 from the Bayes Network
|
||||
result = optimize(*linearBayesNet);
|
||||
Point2 x3_update = linearizationPoints[x3].expmap(result[ordering->at(x3)]);
|
||||
Point2 x3_update = linearizationPoints[x3].retract(result[ordering->at(x3)]);
|
||||
x3_update.print("X3 Update");
|
||||
|
||||
// Update the linearization point to the new estimate
|
||||
|
|
Loading…
Reference in New Issue