Added refs, included macros.lyx, and added quite a bit about dexp.
parent
3dbb69dcbd
commit
fd539b137d
|
@ -76,335 +76,10 @@ Frank Dellaert
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "macros.lyx"
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Derivatives
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\deriv}[2]{\frac{\partial#1}{\partial#2}}
|
||||
{\frac{\partial#1}{\partial#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\at}[2]{#1\biggr\rvert_{#2}}
|
||||
{#1\biggr\rvert_{#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} }
|
||||
{\at{\deriv{#1}{#2}}{#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Lie Groups
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\xhat}{\hat{x}}
|
||||
{\hat{x}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\yhat}{\hat{y}}
|
||||
{\hat{y}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Ad}[1]{Ad_{#1}}
|
||||
{Ad_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\AAdd}[1]{\mathbf{\mathop{Ad}}{}_{#1}}
|
||||
{\mathbf{\mathop{Ad}}{}_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\define}{\stackrel{\Delta}{=}}
|
||||
{\stackrel{\Delta}{=}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\gg}{\mathfrak{g}}
|
||||
{\mathfrak{g}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rn}{\mathbb{R}^{n}}
|
||||
{\mathbb{R}^{n}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SO(2), 1
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rtwo}{\mathfrak{\mathbb{R}^{2}}}
|
||||
{\mathfrak{\mathbb{R}^{2}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SOtwo}{SO(2)}
|
||||
{SO(2)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\sotwo}{\mathfrak{so(2)}}
|
||||
{\mathfrak{so(2)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\that}{\hat{\theta}}
|
||||
{\hat{\theta}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\skew}[1]{[#1]_{+}}
|
||||
{[#1]_{+}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SE(2), 3
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SEtwo}{SE(2)}
|
||||
{SE(2)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\setwo}{\mathfrak{se(2)}}
|
||||
{\mathfrak{se(2)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Skew}[1]{[#1]_{\times}}
|
||||
{[#1]_{\times}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SO(3), 3
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rthree}{\mathfrak{\mathbb{R}^{3}}}
|
||||
{\mathfrak{\mathbb{R}^{3}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SOthree}{SO(3)}
|
||||
{SO(3)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\sothree}{\mathfrak{so(3)}}
|
||||
{\mathfrak{so(3)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\what}{\hat{\omega}}
|
||||
{\hat{\omega}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SE(3),6
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rsix}{\mathfrak{\mathbb{R}^{6}}}
|
||||
{\mathfrak{\mathbb{R}^{6}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SEthree}{SE(3)}
|
||||
{SE(3)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\sethree}{\mathfrak{se(3)}}
|
||||
{\mathfrak{se(3)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\xihat}{\hat{\xi}}
|
||||
{\hat{\xi}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Aff(2),6
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Afftwo}{Aff(2)}
|
||||
{Aff(2)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\afftwo}{\mathfrak{aff(2)}}
|
||||
{\mathfrak{aff(2)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\aa}{a}
|
||||
{a}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ahat}{\hat{a}}
|
||||
{\hat{a}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SL(3),8
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SLthree}{SL(3)}
|
||||
{SL(3)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\slthree}{\mathfrak{sl(3)}}
|
||||
{\mathfrak{sl(3)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hh}{h}
|
||||
{h}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hhat}{\hat{h}}
|
||||
{\hat{h}}
|
||||
\end_inset
|
||||
|
||||
|
||||
|
|
137
doc/macros.lyx
137
doc/macros.lyx
|
@ -1,42 +1,60 @@
|
|||
#LyX 1.6.5 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 345
|
||||
#LyX 2.0 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 413
|
||||
\begin_document
|
||||
\begin_header
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language english
|
||||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman default
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_osf false
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
|
||||
\graphics default
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\paperfontsize default
|
||||
\use_hyperref false
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_amsmath 1
|
||||
\use_esint 1
|
||||
\use_mhchem 1
|
||||
\use_mathdots 0
|
||||
\cite_engine basic
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\use_refstyle 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\defskip medskip
|
||||
\paragraph_indentation default
|
||||
\quotes_language english
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\author ""
|
||||
\author ""
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
|
@ -62,14 +80,14 @@ Derivatives
|
|||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\at}[2]{#1\biggr\rvert_{#2}}
|
||||
{#1\biggr\rvert_{#2}}
|
||||
\newcommand{\at}[1]{#1\biggr\vert_{\#2}}
|
||||
{#1\biggr\vert_{\#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} }
|
||||
{\at{\deriv{#1}{#2}}{#3}}
|
||||
{\at{\deriv{#1}{#2}}#3}
|
||||
\end_inset
|
||||
|
||||
|
||||
|
@ -107,6 +125,15 @@ Lie Groups
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\AAdd}[1]{\mathbf{\mathop{Ad}}{}_{#1}}
|
||||
{\mathbf{\mathop{Ad}}{}_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -144,6 +171,12 @@ SO(2)
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rone}{\mathfrak{\mathbb{R}}}
|
||||
{\mathfrak{\mathbb{R}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rtwo}{\mathfrak{\mathbb{R}^{2}}}
|
||||
{\mathfrak{\mathbb{R}^{2}}}
|
||||
|
@ -202,6 +235,12 @@ SE(2)
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Skew}[1]{[#1]_{\times}}
|
||||
{[#1]_{\times}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -243,7 +282,7 @@ SO(3)
|
|||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Skew}[1]{[#1]_{\times}}
|
||||
\renewcommand{\Skew}[1]{[#1]_{\times}}
|
||||
{[#1]_{\times}}
|
||||
\end_inset
|
||||
|
||||
|
@ -288,6 +327,86 @@ SE(3)
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Aff(2),6
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Afftwo}{Aff(2)}
|
||||
{Aff(2)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\afftwo}{\mathfrak{aff(2)}}
|
||||
{\mathfrak{aff(2)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\aa}{a}
|
||||
{a}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ahat}{\hat{a}}
|
||||
{\hat{a}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SL(3),8
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SLthree}{SL(3)}
|
||||
{SL(3)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\slthree}{\mathfrak{sl(3)}}
|
||||
{\mathfrak{sl(3)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hh}{h}
|
||||
{h}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hhat}{\hat{h}}
|
||||
{\hat{h}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
396
doc/math.lyx
396
doc/math.lyx
|
@ -1237,21 +1237,28 @@ reference "eq:ApproximateObjective"
|
|||
\end_inset
|
||||
|
||||
.
|
||||
In particular, the notion of an exponential map allows us to define an
|
||||
incremental transformation as tracing out a geodesic curve on the group
|
||||
manifold along a certain
|
||||
In particular, the notion of an exponential map allows us to define a mapping
|
||||
from
|
||||
\series bold
|
||||
tangent vector
|
||||
local coordinates
|
||||
\series default
|
||||
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
back to a neighborhood in
|
||||
\begin_inset Formula $G$
|
||||
\end_inset
|
||||
|
||||
around
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
a\oplus\xi\define a\exp\left(\hat{\xi}\right)
|
||||
\]
|
||||
\begin{equation}
|
||||
a\oplus\xi\define a\exp\left(\hat{\xi}\right)\label{eq:expmap}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -1263,11 +1270,12 @@ with
|
|||
\begin_inset Formula $n$
|
||||
\end_inset
|
||||
|
||||
-dimensional Lie group,
|
||||
-dimensional Lie group.
|
||||
Above,
|
||||
\begin_inset Formula $\hat{\xi}\in\mathfrak{g}$
|
||||
\end_inset
|
||||
|
||||
the Lie algebra element corresponding to the vector
|
||||
is the Lie algebra element corresponding to the vector
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
|
@ -1305,7 +1313,7 @@ For the Lie group
|
|||
\end_inset
|
||||
|
||||
is denoted as
|
||||
\begin_inset Formula $\omega$
|
||||
\begin_inset Formula $\omega t$
|
||||
\end_inset
|
||||
|
||||
and represents an angular displacement.
|
||||
|
@ -1314,17 +1322,17 @@ For the Lie group
|
|||
\end_inset
|
||||
|
||||
is a skew symmetric matrix denoted as
|
||||
\begin_inset Formula $\Skew{\omega}\in\sothree$
|
||||
\begin_inset Formula $\Skew{\omega t}\in\sothree$
|
||||
\end_inset
|
||||
|
||||
, and is given by
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\Skew{\omega}=\left[\begin{array}{ccc}
|
||||
\Skew{\omega t}=\left[\begin{array}{ccc}
|
||||
0 & -\omega_{z} & \omega_{y}\\
|
||||
\omega_{z} & 0 & -\omega_{x}\\
|
||||
-\omega_{y} & \omega_{x} & 0
|
||||
\end{array}\right]
|
||||
\end{array}\right]t
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -1334,12 +1342,136 @@ Finally, the increment
|
|||
\end_inset
|
||||
|
||||
corresponds to an incremental rotation
|
||||
\begin_inset Formula $R\oplus\omega=Re^{\Skew{\omega}}$
|
||||
\begin_inset Formula $R\oplus\omega t=Re^{\Skew{\omega t}}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Local Coordinates vs.
|
||||
Tangent Vectors
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In differential geometry,
|
||||
\series bold
|
||||
tangent vectors
|
||||
\series default
|
||||
|
||||
\begin_inset Formula $v\in T_{a}G$
|
||||
\end_inset
|
||||
|
||||
at
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
are elements of the Lie algebra
|
||||
\begin_inset Formula $\mathfrak{g}$
|
||||
\end_inset
|
||||
|
||||
, and are defined as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
v\define\Jac{\gamma(t)}t{t=0}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\gamma$
|
||||
\end_inset
|
||||
|
||||
is some curve that passes through
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
at
|
||||
\begin_inset Formula $t=0$
|
||||
\end_inset
|
||||
|
||||
, i.e.
|
||||
|
||||
\begin_inset Formula $\gamma(0)=a$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In particular, for any fixed local coordinate
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
the map
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:expmap"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be used to define a
|
||||
\series bold
|
||||
geodesic curve
|
||||
\series default
|
||||
on the group manifold defined by
|
||||
\begin_inset Formula $\gamma:t\mapsto ae^{\widehat{t\xi}}$
|
||||
\end_inset
|
||||
|
||||
, and the corresponding tangent vector is given by
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\Jac{ae^{\widehat{t\xi}}}t{t=0}=a\xihat\label{eq:tangent-vector}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
This defines the mapping between local coordinates
|
||||
\begin_inset Formula $\xi\in\Rn$
|
||||
\end_inset
|
||||
|
||||
and actual tangent vectors
|
||||
\begin_inset Formula $a\xihat\in g$
|
||||
\end_inset
|
||||
|
||||
: the vector
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
defines a direction of travel on the manifold, but does so in the local
|
||||
coordinate frame
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Example
|
||||
Assume a rigid body's attitude is described by
|
||||
\begin_inset Formula $R_{b}^{n}(t)$
|
||||
\end_inset
|
||||
|
||||
, where the indices denote the navigation frame
|
||||
\begin_inset Formula $N$
|
||||
\end_inset
|
||||
|
||||
and body frame
|
||||
\begin_inset Formula $B$
|
||||
\end_inset
|
||||
|
||||
, respectively.
|
||||
An extrinsically calibrated gyroscope measures the angular velocity
|
||||
\begin_inset Formula $\omega^{b}$
|
||||
\end_inset
|
||||
|
||||
, in the body frame, and the corresponding tangent vector is
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\dot{R}_{b}^{n}(t)=R_{b}^{n}(t)\widehat{\omega^{b}}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Derivatives
|
||||
\end_layout
|
||||
|
@ -1352,7 +1484,7 @@ reference "def:differentiable"
|
|||
|
||||
\end_inset
|
||||
|
||||
to map exponential coordinates
|
||||
to map local coordinates
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
|
@ -1368,7 +1500,7 @@ reference "def:differentiable"
|
|||
\begin_inset Formula $Df_{a}$
|
||||
\end_inset
|
||||
|
||||
locally approximates a function
|
||||
approximates the function
|
||||
\begin_inset Formula $f$
|
||||
\end_inset
|
||||
|
||||
|
@ -1378,6 +1510,10 @@ reference "def:differentiable"
|
|||
|
||||
to
|
||||
\begin_inset Formula $\Reals m$
|
||||
\end_inset
|
||||
|
||||
in a neighborhood around
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
:
|
||||
|
@ -1455,41 +1591,6 @@ derivative
|
|||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Note that the vectors
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
can be viewed as lying in the tangent space to
|
||||
\begin_inset Formula $G$
|
||||
\end_inset
|
||||
|
||||
at
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
, but defining this rigorously would take us on a longer tour of differential
|
||||
geometry.
|
||||
Informally,
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
is simply the direction, in a local coordinate frame, that is locally tangent
|
||||
at
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
to a geodesic curve
|
||||
\begin_inset Formula $\gamma:t\mapsto ae^{\widehat{t\xi}}$
|
||||
\end_inset
|
||||
|
||||
traced out by the exponential map, with
|
||||
\begin_inset Formula $\gamma(0)=a$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Derivative of an Action
|
||||
\begin_inset CommandInset label
|
||||
|
@ -3000,7 +3101,7 @@ f(ge^{\xhat})=f(ge^{\xhat}g^{-1}g)=f(e^{\Ad g\xhat}g)
|
|||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Derivative of the Exponential and Logarithm Map
|
||||
Derivative of the Exponential Map
|
||||
\end_layout
|
||||
|
||||
\begin_layout Theorem
|
||||
|
@ -3064,17 +3165,196 @@ For
|
|||
\begin_inset Formula $\xi\neq0$
|
||||
\end_inset
|
||||
|
||||
, things are not simple, see .
|
||||
, things are not simple.
|
||||
As with pushforwards above, we will be looking for an
|
||||
\begin_inset Formula $n\times n$
|
||||
\end_inset
|
||||
|
||||
\begin_inset Flex URL
|
||||
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
Jacobian
|
||||
\begin_inset Formula $f'(\xi)$
|
||||
\end_inset
|
||||
|
||||
such that
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\bar default
|
||||
\strikeout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
f\left(\xi+\delta\right)\approx f\left(\xi\right)\exp\left(\widehat{f'(\xi)\delta}\right)\label{eq:push_exp}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
Differential geometry tells us that for any Lie algebra element
|
||||
\begin_inset Formula $\xihat\in\mathfrak{g}$
|
||||
\end_inset
|
||||
|
||||
there exists a
|
||||
\emph on
|
||||
linear
|
||||
\emph default
|
||||
map
|
||||
\begin_inset Formula $d\exp_{\xihat}:T_{\xihat}\mathfrak{g}\rightarrow T_{\exp(\xihat)}G$
|
||||
\end_inset
|
||||
|
||||
, which is given by
|
||||
\begin_inset Foot
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
See
|
||||
\begin_inset Flex URL
|
||||
status open
|
||||
|
||||
http://deltaepsilons.wordpress.com/2009/11/06/helgasons-formula-for-the-differenti
|
||||
al-of-the-exponential/
|
||||
\begin_layout Plain Layout
|
||||
|
||||
http://deltaepsilons.wordpress.com/2009/11/06/
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
or
|
||||
\begin_inset Flex URL
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
https://en.wikipedia.org/wiki/Derivative_of_the_exponential_map
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
d\exp_{\xihat}\hat{x}=\exp(\xihat)\frac{1-\exp(-ad_{\xihat})}{ad_{\xihat}}\hat{x}\label{eq:dexp}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
with
|
||||
\begin_inset Formula $\hat{x}\in T_{\xihat}\mathfrak{g}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $ad_{\xihat}$
|
||||
\end_inset
|
||||
|
||||
itself a linear map taking
|
||||
\begin_inset Formula $\hat{x}$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $[\xihat,\hat{x}]$
|
||||
\end_inset
|
||||
|
||||
, the Lie bracket.
|
||||
The actual formula above is not really as important as the fact that the
|
||||
linear map exists, although it is expressed directly in terms of tangent
|
||||
vectors to
|
||||
\begin_inset Formula $\mathfrak{g}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $G$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:dexp"
|
||||
|
||||
\end_inset
|
||||
|
||||
is a tangent vector, and comparing with
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:tangent-vector"
|
||||
|
||||
\end_inset
|
||||
|
||||
we see that it maps to local coordinates
|
||||
\begin_inset Formula $y$
|
||||
\end_inset
|
||||
|
||||
as follows:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\yhat=\frac{1-\exp(-ad_{\xihat})}{ad_{\xihat}}\hat{x}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
which can be used to construct the Jacobian
|
||||
\begin_inset Formula $f'(\xi)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Example
|
||||
For
|
||||
\begin_inset Formula $\SOthree$
|
||||
\end_inset
|
||||
|
||||
, the operator
|
||||
\begin_inset Formula $ad_{\xihat}$
|
||||
\end_inset
|
||||
|
||||
is simply a matrix multiplication when representing
|
||||
\begin_inset Formula $\sothree$
|
||||
\end_inset
|
||||
|
||||
using 3-vectors, i.e.,
|
||||
\begin_inset Formula $ad_{\xihat}x=\xihat x$
|
||||
\end_inset
|
||||
|
||||
, and the
|
||||
\begin_inset Formula $3\times3$
|
||||
\end_inset
|
||||
|
||||
Jacobian corresponding to
|
||||
\begin_inset Formula $d\exp$
|
||||
\end_inset
|
||||
|
||||
is
|
||||
\begin_inset Formula
|
||||
\[
|
||||
f'(\xi)=\frac{I_{3\times3}-\exp(-\xihat)}{\xihat}=\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(k+1)!}\xihat^{k}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
which, similar to the exponential map, has a simple closed form expression
|
||||
for
|
||||
\begin_inset Formula $\SOthree$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
@ -3097,7 +3377,7 @@ Retractions
|
|||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\retract}{\mathcal{R}}
|
||||
\renewcommand{\retract}{\mathcal{R}}
|
||||
{\mathcal{R}}
|
||||
\end_inset
|
||||
|
||||
|
@ -6797,7 +7077,7 @@ Then
|
|||
\begin_layout Standard
|
||||
\begin_inset CommandInset bibtex
|
||||
LatexCommand bibtex
|
||||
bibfiles "/Users/dellaert/papers/refs"
|
||||
bibfiles "refs"
|
||||
options "plain"
|
||||
|
||||
\end_inset
|
||||
|
|
|
@ -0,0 +1,26 @@
|
|||
@article{Iserles00an,
|
||||
title = {Lie-group methods},
|
||||
author = {Iserles, Arieh and Munthe-Kaas, Hans Z and
|
||||
N{\o}rsett, Syvert P and Zanna, Antonella},
|
||||
journal = {Acta Numerica 2000},
|
||||
volume = {9},
|
||||
pages = {215--365},
|
||||
year = {2000},
|
||||
publisher = {Cambridge Univ Press}
|
||||
}
|
||||
|
||||
@book{Murray94book,
|
||||
title = {A mathematical introduction to robotic manipulation},
|
||||
author = {Murray, Richard M and Li, Zexiang and Sastry, S
|
||||
Shankar and Sastry, S Shankara},
|
||||
year = {1994},
|
||||
publisher = {CRC press}
|
||||
}
|
||||
|
||||
@book{Spivak65book,
|
||||
title = {Calculus on manifolds},
|
||||
author = {Spivak, Michael},
|
||||
volume = {1},
|
||||
year = {1965},
|
||||
publisher = {WA Benjamin New York}
|
||||
}
|
Loading…
Reference in New Issue