Comparison script
parent
5b0580ff5f
commit
fcf51faf0c
|
@ -0,0 +1,259 @@
|
||||||
|
"""
|
||||||
|
Compare the Fundamental Matrix and Essential Matrix methods for optimizing the view-graph.
|
||||||
|
It measures the distance from the ground truth matrices in terms of the norm of local coordinates (geodesic distance)
|
||||||
|
on the respective manifolds. It also plots the final error of the optimization.
|
||||||
|
Author: Frank Dellaert (with heavy assist from ChatGPT)
|
||||||
|
Date: October 2024
|
||||||
|
"""
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
from gtsam.examples import SFMdata
|
||||||
|
|
||||||
|
import gtsam
|
||||||
|
import argparse
|
||||||
|
from gtsam import (
|
||||||
|
Cal3_S2,
|
||||||
|
EdgeKey,
|
||||||
|
EssentialMatrix,
|
||||||
|
FundamentalMatrix,
|
||||||
|
LevenbergMarquardtOptimizer,
|
||||||
|
LevenbergMarquardtParams,
|
||||||
|
NonlinearFactorGraph,
|
||||||
|
PinholeCameraCal3_S2,
|
||||||
|
Values,
|
||||||
|
)
|
||||||
|
|
||||||
|
# For symbol shorthand (e.g., K(0), K(1))
|
||||||
|
K_sym = gtsam.symbol_shorthand.K
|
||||||
|
|
||||||
|
# Methods to compare
|
||||||
|
methods = ["FundamentalMatrix", "EssentialMatrix"]
|
||||||
|
|
||||||
|
|
||||||
|
# Formatter function for printing keys
|
||||||
|
def formatter(key):
|
||||||
|
sym = gtsam.Symbol(key)
|
||||||
|
if sym.chr() == ord("k"):
|
||||||
|
return f"k{sym.index()}"
|
||||||
|
else:
|
||||||
|
edge = EdgeKey(key)
|
||||||
|
return f"({edge.i()},{edge.j()})"
|
||||||
|
|
||||||
|
|
||||||
|
# Function to simulate data
|
||||||
|
def simulate_data(num_cameras):
|
||||||
|
# Define the camera calibration parameters
|
||||||
|
K = Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
|
||||||
|
|
||||||
|
# Create the set of 8 ground-truth landmarks
|
||||||
|
points = SFMdata.createPoints()
|
||||||
|
|
||||||
|
# Create the set of ground-truth poses
|
||||||
|
poses = SFMdata.posesOnCircle(num_cameras, 30)
|
||||||
|
|
||||||
|
# Simulate measurements from each camera pose
|
||||||
|
measurements = [[None for _ in range(len(points))] for _ in range(num_cameras)]
|
||||||
|
for i in range(num_cameras):
|
||||||
|
camera = PinholeCameraCal3_S2(poses[i], K)
|
||||||
|
for j in range(len(points)):
|
||||||
|
measurements[i][j] = camera.project(points[j])
|
||||||
|
|
||||||
|
return points, poses, measurements, K
|
||||||
|
|
||||||
|
|
||||||
|
# Function to compute ground truth matrices
|
||||||
|
def compute_ground_truth_matrices(method, poses, K):
|
||||||
|
if method == "FundamentalMatrix":
|
||||||
|
F1 = FundamentalMatrix(K, poses[0].between(poses[1]), K)
|
||||||
|
F2 = FundamentalMatrix(K, poses[0].between(poses[2]), K)
|
||||||
|
return F1, F2
|
||||||
|
elif method == "EssentialMatrix":
|
||||||
|
E1 = EssentialMatrix.FromPose3(poses[0].between(poses[1]))
|
||||||
|
E2 = EssentialMatrix.FromPose3(poses[0].between(poses[2]))
|
||||||
|
return E1, E2
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown method {method}")
|
||||||
|
|
||||||
|
|
||||||
|
# Function to build the factor graph
|
||||||
|
def build_factor_graph(method, num_cameras, measurements):
|
||||||
|
graph = NonlinearFactorGraph()
|
||||||
|
|
||||||
|
if method == "FundamentalMatrix":
|
||||||
|
# Use TransferFactorFundamentalMatrix
|
||||||
|
FactorClass = gtsam.TransferFactorFundamentalMatrix
|
||||||
|
elif method == "EssentialMatrix":
|
||||||
|
# Use EssentialTransferFactorCal3_S2
|
||||||
|
FactorClass = gtsam.EssentialTransferFactorCal3_S2
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown method {method}")
|
||||||
|
|
||||||
|
for a in range(num_cameras):
|
||||||
|
b = (a + 1) % num_cameras # Next camera
|
||||||
|
c = (a + 2) % num_cameras # Camera after next
|
||||||
|
|
||||||
|
# Vectors to collect tuples for each factor
|
||||||
|
tuples1 = []
|
||||||
|
tuples2 = []
|
||||||
|
tuples3 = []
|
||||||
|
|
||||||
|
# Collect data for the three factors
|
||||||
|
for j in range(len(measurements[0])):
|
||||||
|
tuples1.append((measurements[a][j], measurements[b][j], measurements[c][j]))
|
||||||
|
tuples2.append((measurements[a][j], measurements[c][j], measurements[b][j]))
|
||||||
|
tuples3.append((measurements[c][j], measurements[b][j], measurements[a][j]))
|
||||||
|
|
||||||
|
# Add transfer factors between views a, b, and c.
|
||||||
|
graph.add(FactorClass(EdgeKey(a, c), EdgeKey(b, c), tuples1))
|
||||||
|
graph.add(FactorClass(EdgeKey(a, b), EdgeKey(b, c), tuples2))
|
||||||
|
graph.add(FactorClass(EdgeKey(a, c), EdgeKey(a, b), tuples3))
|
||||||
|
|
||||||
|
return graph
|
||||||
|
|
||||||
|
|
||||||
|
# Function to get initial estimates
|
||||||
|
def get_initial_estimate(method, num_cameras, ground_truth_matrices, K_initial):
|
||||||
|
initialEstimate = Values()
|
||||||
|
|
||||||
|
if method == "FundamentalMatrix":
|
||||||
|
F1, F2 = ground_truth_matrices
|
||||||
|
for a in range(num_cameras):
|
||||||
|
b = (a + 1) % num_cameras # Next camera
|
||||||
|
c = (a + 2) % num_cameras # Camera after next
|
||||||
|
initialEstimate.insert(EdgeKey(a, b).key(), F1)
|
||||||
|
initialEstimate.insert(EdgeKey(a, c).key(), F2)
|
||||||
|
elif method == "EssentialMatrix":
|
||||||
|
E1, E2 = ground_truth_matrices
|
||||||
|
for a in range(num_cameras):
|
||||||
|
b = (a + 1) % num_cameras # Next camera
|
||||||
|
c = (a + 2) % num_cameras # Camera after next
|
||||||
|
initialEstimate.insert(EdgeKey(a, b).key(), E1)
|
||||||
|
initialEstimate.insert(EdgeKey(a, c).key(), E2)
|
||||||
|
# Insert initial calibrations
|
||||||
|
for i in range(num_cameras):
|
||||||
|
initialEstimate.insert(K_sym(i), K_initial)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown method {method}")
|
||||||
|
|
||||||
|
return initialEstimate
|
||||||
|
|
||||||
|
|
||||||
|
# Function to optimize the graph
|
||||||
|
def optimize(graph, initialEstimate):
|
||||||
|
params = LevenbergMarquardtParams()
|
||||||
|
params.setlambdaInitial(1000.0) # Initialize lambda to a high value
|
||||||
|
params.setVerbosityLM("SUMMARY")
|
||||||
|
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate, params)
|
||||||
|
result = optimizer.optimize()
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
# Function to compute distances from ground truth
|
||||||
|
def compute_distances(method, result, ground_truth_matrices, num_cameras):
|
||||||
|
distances = []
|
||||||
|
if method == "FundamentalMatrix":
|
||||||
|
F1, F2 = ground_truth_matrices
|
||||||
|
for a in range(num_cameras):
|
||||||
|
b = (a + 1) % num_cameras
|
||||||
|
c = (a + 2) % num_cameras
|
||||||
|
key_ab = EdgeKey(a, b).key()
|
||||||
|
key_ac = EdgeKey(a, c).key()
|
||||||
|
F_est_ab = result.atFundamentalMatrix(key_ab)
|
||||||
|
F_est_ac = result.atFundamentalMatrix(key_ac)
|
||||||
|
# Compute local coordinates
|
||||||
|
dist_ab = np.linalg.norm(F1.localCoordinates(F_est_ab))
|
||||||
|
dist_ac = np.linalg.norm(F2.localCoordinates(F_est_ac))
|
||||||
|
distances.append(dist_ab)
|
||||||
|
distances.append(dist_ac)
|
||||||
|
elif method == "EssentialMatrix":
|
||||||
|
E1, E2 = ground_truth_matrices
|
||||||
|
for a in range(num_cameras):
|
||||||
|
b = (a + 1) % num_cameras
|
||||||
|
c = (a + 2) % num_cameras
|
||||||
|
key_ab = EdgeKey(a, b).key()
|
||||||
|
key_ac = EdgeKey(a, c).key()
|
||||||
|
E_est_ab = result.atEssentialMatrix(key_ab)
|
||||||
|
E_est_ac = result.atEssentialMatrix(key_ac)
|
||||||
|
# Compute local coordinates
|
||||||
|
dist_ab = np.linalg.norm(E1.localCoordinates(E_est_ab))
|
||||||
|
dist_ac = np.linalg.norm(E2.localCoordinates(E_est_ac))
|
||||||
|
distances.append(dist_ab)
|
||||||
|
distances.append(dist_ac)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown method {method}")
|
||||||
|
return distances
|
||||||
|
|
||||||
|
|
||||||
|
# Function to plot results
|
||||||
|
def plot_results(results):
|
||||||
|
methods = list(results.keys())
|
||||||
|
final_errors = [results[method]["final_error"] for method in methods]
|
||||||
|
distances = [np.mean(results[method]["distances"]) for method in methods]
|
||||||
|
|
||||||
|
fig, ax1 = plt.subplots()
|
||||||
|
|
||||||
|
color = "tab:red"
|
||||||
|
ax1.set_xlabel("Method")
|
||||||
|
ax1.set_ylabel("Final Error", color=color)
|
||||||
|
ax1.bar(methods, final_errors, color=color, alpha=0.6)
|
||||||
|
ax1.tick_params(axis="y", labelcolor=color)
|
||||||
|
|
||||||
|
ax2 = ax1.twinx()
|
||||||
|
color = "tab:blue"
|
||||||
|
ax2.set_ylabel("Mean Geodesic Distance", color=color)
|
||||||
|
ax2.plot(methods, distances, color=color, marker="o")
|
||||||
|
ax2.tick_params(axis="y", labelcolor=color)
|
||||||
|
|
||||||
|
plt.title("Comparison of Methods")
|
||||||
|
fig.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
# Main function
|
||||||
|
def main():
|
||||||
|
# Parse command line arguments
|
||||||
|
parser = argparse.ArgumentParser(description="Compare Fundamental and Essential Matrix Methods")
|
||||||
|
parser.add_argument("--num_cameras", type=int, default=4, help="Number of cameras (default: 4)")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Initialize results dictionary
|
||||||
|
results = {}
|
||||||
|
|
||||||
|
for method in methods:
|
||||||
|
print(f"Running method: {method}")
|
||||||
|
|
||||||
|
# Simulate data
|
||||||
|
points, poses, measurements, K_initial = simulate_data(args.num_cameras)
|
||||||
|
|
||||||
|
# Compute ground truth matrices
|
||||||
|
ground_truth_matrices = compute_ground_truth_matrices(method, poses, K_initial)
|
||||||
|
|
||||||
|
# Build the factor graph
|
||||||
|
graph = build_factor_graph(method, args.num_cameras, measurements)
|
||||||
|
|
||||||
|
# Get initial estimates
|
||||||
|
initialEstimate = get_initial_estimate(method, args.num_cameras, ground_truth_matrices, K_initial)
|
||||||
|
|
||||||
|
# Optimize the graph
|
||||||
|
result = optimize(graph, initialEstimate)
|
||||||
|
|
||||||
|
# Compute distances from ground truth
|
||||||
|
distances = compute_distances(method, result, ground_truth_matrices, args.num_cameras)
|
||||||
|
|
||||||
|
# Compute final error
|
||||||
|
final_error = graph.error(result)
|
||||||
|
|
||||||
|
# Store results
|
||||||
|
results[method] = {"distances": distances, "final_error": final_error}
|
||||||
|
|
||||||
|
print(f"Method: {method}")
|
||||||
|
print(f"Final Error: {final_error}")
|
||||||
|
print(f"Mean Geodesic Distance: {np.mean(distances)}\n")
|
||||||
|
|
||||||
|
# Plot results
|
||||||
|
plot_results(results)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
Reference in New Issue