moved class to .h
parent
786d4bbf9a
commit
fcf2d31684
|
@ -0,0 +1,312 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testGncOptimizer.cpp
|
||||
* @brief Unit tests for GncOptimizer class
|
||||
* @author Jingnan Shi
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
*
|
||||
* Implementation of the paper: Yang, Antonante, Tzoumas, Carlone, "Graduated Non-Convexity for Robust Spatial Perception:
|
||||
* From Non-Minimal Solvers to Global Outlier Rejection", ICRA/RAL, 2020. (arxiv version: https://arxiv.org/pdf/1909.08605.pdf)
|
||||
*
|
||||
* See also:
|
||||
* Antonante, Tzoumas, Yang, Carlone, "Outlier-Robust Estimation: Hardness, Minimally-Tuned Algorithms, and Applications",
|
||||
* arxiv: https://arxiv.org/pdf/2007.15109.pdf, 2020.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class BaseOptimizerParameters>
|
||||
class GncParams {
|
||||
public:
|
||||
/** Verbosity levels */
|
||||
enum VerbosityGNC {
|
||||
SILENT = 0, SUMMARY, VALUES
|
||||
};
|
||||
|
||||
/** Choice of robust loss function for GNC */
|
||||
enum RobustLossType {
|
||||
GM /*Geman McClure*/, TLS /*Truncated least squares*/
|
||||
};
|
||||
|
||||
using BaseOptimizer = GaussNewtonOptimizer; // BaseOptimizerParameters::OptimizerType;
|
||||
|
||||
GncParams(const BaseOptimizerParameters& baseOptimizerParams) :
|
||||
baseOptimizerParams(baseOptimizerParams) {
|
||||
}
|
||||
|
||||
// default constructor
|
||||
GncParams() :
|
||||
baseOptimizerParams() {
|
||||
}
|
||||
|
||||
BaseOptimizerParameters baseOptimizerParams;
|
||||
/// any other specific GNC parameters:
|
||||
RobustLossType lossType = GM; /* default loss*/
|
||||
size_t maxIterations = 100; /* maximum number of iterations*/
|
||||
double barcSq = 1.0; /* a factor is considered an inlier if factor.error() < barcSq. Note that factor.error() whitens by the covariance*/
|
||||
double muStep = 1.4; /* multiplicative factor to reduce/increase the mu in gnc */
|
||||
VerbosityGNC verbosityGNC = SILENT; /* verbosity level */
|
||||
std::vector<size_t> knownInliers = std::vector<size_t>(); /* slots in the factor graph corresponding to measurements that we know are inliers */
|
||||
|
||||
void setLossType(const RobustLossType type) {
|
||||
lossType = type;
|
||||
}
|
||||
void setMaxIterations(const size_t maxIter) {
|
||||
std::cout
|
||||
<< "setMaxIterations: changing the max nr of iters might lead to less accurate solutions and is not recommended! "
|
||||
<< std::endl;
|
||||
maxIterations = maxIter;
|
||||
}
|
||||
void setInlierThreshold(const double inth) {
|
||||
barcSq = inth;
|
||||
}
|
||||
void setMuStep(const double step) {
|
||||
muStep = step;
|
||||
}
|
||||
void setVerbosityGNC(const VerbosityGNC verbosity) {
|
||||
verbosityGNC = verbosity;
|
||||
}
|
||||
void setKnownInliers(const std::vector<size_t> knownIn) {
|
||||
for (size_t i = 0; i < knownIn.size(); i++)
|
||||
knownInliers.push_back(knownIn[i]);
|
||||
}
|
||||
|
||||
/// equals
|
||||
bool equals(const GncParams& other, double tol = 1e-9) const {
|
||||
return baseOptimizerParams.equals(other.baseOptimizerParams)
|
||||
&& lossType == other.lossType && maxIterations == other.maxIterations
|
||||
&& std::fabs(barcSq - other.barcSq) <= tol
|
||||
&& std::fabs(muStep - other.muStep) <= tol
|
||||
&& verbosityGNC == other.verbosityGNC
|
||||
&& knownInliers == other.knownInliers;
|
||||
}
|
||||
|
||||
/// print function
|
||||
void print(const std::string& str) const {
|
||||
std::cout << str << "\n";
|
||||
switch (lossType) {
|
||||
case GM:
|
||||
std::cout << "lossType: Geman McClure" << "\n";
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("GncParams::print: unknown loss type.");
|
||||
}
|
||||
std::cout << "maxIterations: " << maxIterations << "\n";
|
||||
std::cout << "barcSq: " << barcSq << "\n";
|
||||
std::cout << "muStep: " << muStep << "\n";
|
||||
std::cout << "verbosityGNC: " << verbosityGNC << "\n";
|
||||
for (size_t i = 0; i < knownInliers.size(); i++)
|
||||
std::cout << "knownInliers: " << knownInliers[i] << "\n";
|
||||
baseOptimizerParams.print(str);
|
||||
}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GncParameters>
|
||||
class GncOptimizer {
|
||||
public:
|
||||
// types etc
|
||||
|
||||
private:
|
||||
NonlinearFactorGraph nfg_;
|
||||
Values state_;
|
||||
GncParameters params_;
|
||||
Vector weights_; // this could be a local variable in optimize, but it is useful to make it accessible from outside
|
||||
|
||||
public:
|
||||
GncOptimizer(const NonlinearFactorGraph& graph, const Values& initialValues,
|
||||
const GncParameters& params = GncParameters()) :
|
||||
state_(initialValues), params_(params) {
|
||||
|
||||
// make sure all noiseModels are Gaussian or convert to Gaussian
|
||||
nfg_.resize(graph.size());
|
||||
for (size_t i = 0; i < graph.size(); i++) {
|
||||
if (graph[i]) {
|
||||
NoiseModelFactor::shared_ptr factor = boost::dynamic_pointer_cast<
|
||||
NoiseModelFactor>(graph[i]);
|
||||
noiseModel::Robust::shared_ptr robust = boost::dynamic_pointer_cast<
|
||||
noiseModel::Robust>(factor->noiseModel());
|
||||
if (robust) { // if the factor has a robust loss, we have to change it:
|
||||
SharedNoiseModel gaussianNoise = robust->noise();
|
||||
NoiseModelFactor::shared_ptr gaussianFactor =
|
||||
factor->cloneWithNewNoiseModel(gaussianNoise);
|
||||
nfg_[i] = gaussianFactor;
|
||||
} else { // else we directly push it back
|
||||
nfg_[i] = factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// getter functions
|
||||
NonlinearFactorGraph getFactors() const {
|
||||
return NonlinearFactorGraph(nfg_);
|
||||
}
|
||||
Values getState() const {
|
||||
return Values(state_);
|
||||
}
|
||||
GncParameters getParams() const {
|
||||
return GncParameters(params_);
|
||||
}
|
||||
Vector getWeights() const {
|
||||
return weights_;
|
||||
}
|
||||
|
||||
/// implement GNC main loop, including graduating nonconvexity with mu
|
||||
Values optimize() {
|
||||
// start by assuming all measurements are inliers
|
||||
weights_ = Vector::Ones(nfg_.size());
|
||||
GaussNewtonOptimizer baseOptimizer(nfg_, state_);
|
||||
Values result = baseOptimizer.optimize();
|
||||
double mu = initializeMu();
|
||||
for (size_t iter = 0; iter < params_.maxIterations; iter++) {
|
||||
|
||||
// display info
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::VALUES) {
|
||||
result.print("result\n");
|
||||
std::cout << "mu: " << mu << std::endl;
|
||||
std::cout << "weights: " << weights_ << std::endl;
|
||||
}
|
||||
// weights update
|
||||
weights_ = calculateWeights(result, mu);
|
||||
|
||||
// variable/values update
|
||||
NonlinearFactorGraph graph_iter = this->makeWeightedGraph(weights_);
|
||||
GaussNewtonOptimizer baseOptimizer_iter(graph_iter, state_);
|
||||
result = baseOptimizer_iter.optimize();
|
||||
|
||||
// stopping condition
|
||||
if (checkMuConvergence(mu)) {
|
||||
// display info
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::SUMMARY) {
|
||||
std::cout << "final iterations: " << iter << std::endl;
|
||||
std::cout << "final mu: " << mu << std::endl;
|
||||
std::cout << "final weights: " << weights_ << std::endl;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// otherwise update mu
|
||||
mu = updateMu(mu);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/// initialize the gnc parameter mu such that loss is approximately convex (remark 5 in GNC paper)
|
||||
double initializeMu() const {
|
||||
// compute largest error across all factors
|
||||
double rmax_sq = 0.0;
|
||||
for (size_t i = 0; i < nfg_.size(); i++) {
|
||||
if (nfg_[i]) {
|
||||
rmax_sq = std::max(rmax_sq, nfg_[i]->error(state_));
|
||||
}
|
||||
}
|
||||
// set initial mu
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM:
|
||||
return 2 * rmax_sq / params_.barcSq; // initial mu
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::initializeMu: called with unknown loss type.");
|
||||
}
|
||||
}
|
||||
|
||||
/// update the gnc parameter mu to gradually increase nonconvexity
|
||||
double updateMu(const double mu) const {
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM:
|
||||
return std::max(1.0, mu / params_.muStep); // reduce mu, but saturate at 1
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::updateMu: called with unknown loss type.");
|
||||
}
|
||||
}
|
||||
|
||||
/// check if we have reached the value of mu for which the surrogate loss matches the original loss
|
||||
bool checkMuConvergence(const double mu) const {
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM:
|
||||
return std::fabs(mu - 1.0) < 1e-9; // mu=1 recovers the original GM function
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::checkMuConvergence: called with unknown loss type.");
|
||||
}
|
||||
}
|
||||
|
||||
/// create a graph where each factor is weighted by the gnc weights
|
||||
NonlinearFactorGraph makeWeightedGraph(const Vector& weights) const {
|
||||
// make sure all noiseModels are Gaussian or convert to Gaussian
|
||||
NonlinearFactorGraph newGraph;
|
||||
newGraph.resize(nfg_.size());
|
||||
for (size_t i = 0; i < nfg_.size(); i++) {
|
||||
if (nfg_[i]) {
|
||||
NoiseModelFactor::shared_ptr factor = boost::dynamic_pointer_cast<
|
||||
NoiseModelFactor>(nfg_[i]);
|
||||
noiseModel::Gaussian::shared_ptr noiseModel =
|
||||
boost::dynamic_pointer_cast<noiseModel::Gaussian>(
|
||||
factor->noiseModel());
|
||||
if (noiseModel) {
|
||||
Matrix newInfo = weights[i] * noiseModel->information();
|
||||
SharedNoiseModel newNoiseModel = noiseModel::Gaussian::Information(
|
||||
newInfo);
|
||||
newGraph[i] = factor->cloneWithNewNoiseModel(newNoiseModel);
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::makeWeightedGraph: unexpected non-Gaussian noise model.");
|
||||
}
|
||||
}
|
||||
}
|
||||
return newGraph;
|
||||
}
|
||||
|
||||
/// calculate gnc weights
|
||||
Vector calculateWeights(const Values currentEstimate, const double mu) {
|
||||
Vector weights = Vector::Ones(nfg_.size());
|
||||
|
||||
// do not update the weights that the user has decided are known inliers
|
||||
std::vector<size_t> allWeights;
|
||||
for (size_t k = 0; k < nfg_.size(); k++) {
|
||||
allWeights.push_back(k);
|
||||
}
|
||||
std::vector<size_t> unknownWeights;
|
||||
std::set_difference(allWeights.begin(), allWeights.end(),
|
||||
params_.knownInliers.begin(), params_.knownInliers.end(),
|
||||
std::inserter(unknownWeights, unknownWeights.begin()));
|
||||
|
||||
// update weights of known inlier/outlier measurements
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM: // use eq (12) in GNC paper
|
||||
for (size_t k : unknownWeights) {
|
||||
if (nfg_[k]) {
|
||||
double u2_k = nfg_[k]->error(currentEstimate); // squared (and whitened) residual
|
||||
weights[k] = std::pow(
|
||||
(mu * params_.barcSq) / (u2_k + mu * params_.barcSq), 2);
|
||||
}
|
||||
}
|
||||
return weights;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::calculateWeights: called with unknown loss type.");
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
}
|
|
@ -17,16 +17,16 @@
|
|||
* @author Frank Dellaert
|
||||
*
|
||||
* Implementation of the paper: Yang, Antonante, Tzoumas, Carlone, "Graduated Non-Convexity for Robust Spatial Perception:
|
||||
* From Non-Minimal Solvers to Global Outlier Rejection", RAL, 2020. (arxiv version: https://arxiv.org/pdf/1909.08605.pdf)
|
||||
* From Non-Minimal Solvers to Global Outlier Rejection", ICRA/RAL, 2020. (arxiv version: https://arxiv.org/pdf/1909.08605.pdf)
|
||||
*
|
||||
* See also:
|
||||
* Antonante, Tzoumas, Yang, Carlone, "Outlier-Robust Estimation: Hardness, Minimally-Tuned Algorithms, and Applications",
|
||||
* arxiv: https://arxiv.org/pdf/2007.15109.pdf, 2020.
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/GncOptimizer.h>
|
||||
#include <tests/smallExample.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
|
@ -36,283 +36,6 @@ using symbol_shorthand::X;
|
|||
using symbol_shorthand::L;
|
||||
static double tol = 1e-7;
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class BaseOptimizerParameters>
|
||||
class GncParams {
|
||||
public:
|
||||
/** Verbosity levels */
|
||||
enum VerbosityGNC {
|
||||
SILENT = 0, SUMMARY, VALUES
|
||||
};
|
||||
|
||||
/** Choice of robust loss function for GNC */
|
||||
enum RobustLossType {
|
||||
GM /*Geman McClure*/, TLS /*Truncated least squares*/
|
||||
};
|
||||
|
||||
using BaseOptimizer = GaussNewtonOptimizer; // BaseOptimizerParameters::OptimizerType;
|
||||
|
||||
GncParams(const BaseOptimizerParameters& baseOptimizerParams) :
|
||||
baseOptimizerParams(baseOptimizerParams) {
|
||||
}
|
||||
|
||||
// default constructor
|
||||
GncParams() :
|
||||
baseOptimizerParams() {
|
||||
}
|
||||
|
||||
BaseOptimizerParameters baseOptimizerParams;
|
||||
/// any other specific GNC parameters:
|
||||
RobustLossType lossType = GM; /* default loss*/
|
||||
size_t maxIterations = 100; /* maximum number of iterations*/
|
||||
double barcSq = 1.0; /* a factor is considered an inlier if factor.error() < barcSq. Note that factor.error() whitens by the covariance*/
|
||||
double muStep = 1.4; /* multiplicative factor to reduce/increase the mu in gnc */
|
||||
VerbosityGNC verbosityGNC = SILENT; /* verbosity level */
|
||||
std::vector<size_t> knownInliers = std::vector<size_t>(); /* slots in the factor graph corresponding to measurements that we know are inliers */
|
||||
|
||||
void setLossType(const RobustLossType type) {
|
||||
lossType = type;
|
||||
}
|
||||
void setMaxIterations(const size_t maxIter) {
|
||||
std::cout
|
||||
<< "setMaxIterations: changing the max nr of iters might lead to less accurate solutions and is not recommended! "
|
||||
<< std::endl;
|
||||
maxIterations = maxIter;
|
||||
}
|
||||
void setInlierThreshold(const double inth) {
|
||||
barcSq = inth;
|
||||
}
|
||||
void setMuStep(const double step) {
|
||||
muStep = step;
|
||||
}
|
||||
void setVerbosityGNC(const VerbosityGNC verbosity) {
|
||||
verbosityGNC = verbosity;
|
||||
}
|
||||
void setKnownInliers(const std::vector<size_t> knownIn) {
|
||||
for (size_t i = 0; i < knownIn.size(); i++)
|
||||
knownInliers.push_back(knownIn[i]);
|
||||
}
|
||||
|
||||
/// equals
|
||||
bool equals(const GncParams& other, double tol = 1e-9) const {
|
||||
return baseOptimizerParams.equals(other.baseOptimizerParams)
|
||||
&& lossType == other.lossType && maxIterations == other.maxIterations
|
||||
&& std::fabs(barcSq - other.barcSq) <= tol
|
||||
&& std::fabs(muStep - other.muStep) <= tol
|
||||
&& verbosityGNC == other.verbosityGNC
|
||||
&& knownInliers == other.knownInliers;
|
||||
}
|
||||
|
||||
/// print function
|
||||
void print(const std::string& str) const {
|
||||
std::cout << str << "\n";
|
||||
switch (lossType) {
|
||||
case GM:
|
||||
std::cout << "lossType: Geman McClure" << "\n";
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("GncParams::print: unknown loss type.");
|
||||
}
|
||||
std::cout << "maxIterations: " << maxIterations << "\n";
|
||||
std::cout << "barcSq: " << barcSq << "\n";
|
||||
std::cout << "muStep: " << muStep << "\n";
|
||||
std::cout << "verbosityGNC: " << verbosityGNC << "\n";
|
||||
for (size_t i = 0; i < knownInliers.size(); i++)
|
||||
std::cout << "knownInliers: " << knownInliers[i] << "\n";
|
||||
baseOptimizerParams.print(str);
|
||||
}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GncParameters>
|
||||
class GncOptimizer {
|
||||
public:
|
||||
// types etc
|
||||
|
||||
private:
|
||||
NonlinearFactorGraph nfg_;
|
||||
Values state_;
|
||||
GncParameters params_;
|
||||
Vector weights_; // this could be a local variable in optimize, but it is useful to make it accessible from outside
|
||||
|
||||
public:
|
||||
GncOptimizer(const NonlinearFactorGraph& graph, const Values& initialValues,
|
||||
const GncParameters& params = GncParameters()) :
|
||||
state_(initialValues), params_(params) {
|
||||
|
||||
// make sure all noiseModels are Gaussian or convert to Gaussian
|
||||
nfg_.resize(graph.size());
|
||||
for (size_t i = 0; i < graph.size(); i++) {
|
||||
if (graph[i]) {
|
||||
NoiseModelFactor::shared_ptr factor = boost::dynamic_pointer_cast<
|
||||
NoiseModelFactor>(graph[i]);
|
||||
noiseModel::Robust::shared_ptr robust = boost::dynamic_pointer_cast<
|
||||
noiseModel::Robust>(factor->noiseModel());
|
||||
if (robust) { // if the factor has a robust loss, we have to change it:
|
||||
SharedNoiseModel gaussianNoise = robust->noise();
|
||||
NoiseModelFactor::shared_ptr gaussianFactor =
|
||||
factor->cloneWithNewNoiseModel(gaussianNoise);
|
||||
nfg_[i] = gaussianFactor;
|
||||
} else { // else we directly push it back
|
||||
nfg_[i] = factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// getter functions
|
||||
NonlinearFactorGraph getFactors() const {
|
||||
return NonlinearFactorGraph(nfg_);
|
||||
}
|
||||
Values getState() const {
|
||||
return Values(state_);
|
||||
}
|
||||
GncParameters getParams() const {
|
||||
return GncParameters(params_);
|
||||
}
|
||||
Vector getWeights() const {
|
||||
return weights_;
|
||||
}
|
||||
|
||||
/// implement GNC main loop, including graduating nonconvexity with mu
|
||||
Values optimize() {
|
||||
// start by assuming all measurements are inliers
|
||||
weights_ = Vector::Ones(nfg_.size());
|
||||
GaussNewtonOptimizer baseOptimizer(nfg_, state_);
|
||||
Values result = baseOptimizer.optimize();
|
||||
double mu = initializeMu();
|
||||
for (size_t iter = 0; iter < params_.maxIterations; iter++) {
|
||||
|
||||
// display info
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::VALUES) {
|
||||
result.print("result\n");
|
||||
std::cout << "mu: " << mu << std::endl;
|
||||
std::cout << "weights: " << weights_ << std::endl;
|
||||
}
|
||||
// weights update
|
||||
weights_ = calculateWeights(result, mu);
|
||||
|
||||
// variable/values update
|
||||
NonlinearFactorGraph graph_iter = this->makeWeightedGraph(weights_);
|
||||
GaussNewtonOptimizer baseOptimizer_iter(graph_iter, state_);
|
||||
result = baseOptimizer_iter.optimize();
|
||||
|
||||
// stopping condition
|
||||
if (checkMuConvergence(mu)) {
|
||||
// display info
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::SUMMARY) {
|
||||
std::cout << "final iterations: " << iter << std::endl;
|
||||
std::cout << "final mu: " << mu << std::endl;
|
||||
std::cout << "final weights: " << weights_ << std::endl;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// otherwise update mu
|
||||
mu = updateMu(mu);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/// initialize the gnc parameter mu such that loss is approximately convex (remark 5 in GNC paper)
|
||||
double initializeMu() const {
|
||||
// compute largest error across all factors
|
||||
double rmax_sq = 0.0;
|
||||
for (size_t i = 0; i < nfg_.size(); i++) {
|
||||
if (nfg_[i]) {
|
||||
rmax_sq = std::max(rmax_sq, nfg_[i]->error(state_));
|
||||
}
|
||||
}
|
||||
// set initial mu
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM:
|
||||
return 2 * rmax_sq / params_.barcSq; // initial mu
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::initializeMu: called with unknown loss type.");
|
||||
}
|
||||
}
|
||||
|
||||
/// update the gnc parameter mu to gradually increase nonconvexity
|
||||
double updateMu(const double mu) const {
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM:
|
||||
return std::max(1.0, mu / params_.muStep); // reduce mu, but saturate at 1
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::updateMu: called with unknown loss type.");
|
||||
}
|
||||
}
|
||||
|
||||
/// check if we have reached the value of mu for which the surrogate loss matches the original loss
|
||||
bool checkMuConvergence(const double mu) const {
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM:
|
||||
return std::fabs(mu - 1.0) < 1e-9; // mu=1 recovers the original GM function
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::checkMuConvergence: called with unknown loss type.");
|
||||
}
|
||||
}
|
||||
|
||||
/// create a graph where each factor is weighted by the gnc weights
|
||||
NonlinearFactorGraph makeWeightedGraph(const Vector& weights) const {
|
||||
// make sure all noiseModels are Gaussian or convert to Gaussian
|
||||
NonlinearFactorGraph newGraph;
|
||||
newGraph.resize(nfg_.size());
|
||||
for (size_t i = 0; i < nfg_.size(); i++) {
|
||||
if (nfg_[i]) {
|
||||
NoiseModelFactor::shared_ptr factor = boost::dynamic_pointer_cast<
|
||||
NoiseModelFactor>(nfg_[i]);
|
||||
noiseModel::Gaussian::shared_ptr noiseModel =
|
||||
boost::dynamic_pointer_cast<noiseModel::Gaussian>(
|
||||
factor->noiseModel());
|
||||
if (noiseModel) {
|
||||
Matrix newInfo = weights[i] * noiseModel->information();
|
||||
SharedNoiseModel newNoiseModel = noiseModel::Gaussian::Information(
|
||||
newInfo);
|
||||
newGraph[i] = factor->cloneWithNewNoiseModel(newNoiseModel);
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::makeWeightedGraph: unexpected non-Gaussian noise model.");
|
||||
}
|
||||
}
|
||||
}
|
||||
return newGraph;
|
||||
}
|
||||
|
||||
/// calculate gnc weights
|
||||
Vector calculateWeights(const Values currentEstimate, const double mu) {
|
||||
Vector weights = Vector::Ones(nfg_.size());
|
||||
|
||||
// do not update the weights that the user has decided are known inliers
|
||||
std::vector<size_t> allWeights;
|
||||
for (size_t k = 0; k < nfg_.size(); k++) {
|
||||
allWeights.push_back(k);
|
||||
}
|
||||
std::vector<size_t> unknownWeights;
|
||||
std::set_difference(allWeights.begin(), allWeights.end(),
|
||||
params_.knownInliers.begin(), params_.knownInliers.end(),
|
||||
std::inserter(unknownWeights, unknownWeights.begin()));
|
||||
|
||||
// update weights of known inlier/outlier measurements
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM: // use eq (12) in GNC paper
|
||||
for (size_t k : unknownWeights) {
|
||||
if (nfg_[k]) {
|
||||
double u2_k = nfg_[k]->error(currentEstimate); // squared (and whitened) residual
|
||||
weights[k] = std::pow(
|
||||
(mu * params_.barcSq) / (u2_k + mu * params_.barcSq), 2);
|
||||
}
|
||||
}
|
||||
return weights;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::calculateWeights: called with unknown loss type.");
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GncOptimizer, gncParamsConstructor) {
|
||||
//check params are correctly parsed
|
||||
|
@ -566,7 +289,7 @@ TEST(GncOptimizer, optimizeWithKnownInliers) {
|
|||
knownInliers.push_back(2);
|
||||
|
||||
// nonconvexity with known inliers
|
||||
GncParams<GaussNewtonParams> gncParams = GncParams<GaussNewtonParams>();
|
||||
GncParams<GaussNewtonParams> gncParams;
|
||||
gncParams.setKnownInliers(knownInliers);
|
||||
// gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::VerbosityGNC::VALUES);
|
||||
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
||||
|
@ -609,7 +332,7 @@ TEST(GncOptimizer, optimizeSmallPoseGraph) {
|
|||
// Note: in difficult instances, we set the odometry measurements to be inliers,
|
||||
// but this problem is simple enought to succeed even without that assumption
|
||||
// std::vector<size_t> knownInliers;
|
||||
GncParams<GaussNewtonParams> gncParams = GncParams<GaussNewtonParams>();
|
||||
GncParams<GaussNewtonParams> gncParams;
|
||||
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(*graph, *initial, gncParams);
|
||||
Values actual = gnc.optimize();
|
||||
|
||||
|
|
Loading…
Reference in New Issue