Noise propagation
parent
88c1308ccf
commit
fcb16ea8c3
|
@ -455,7 +455,7 @@ and the 6-vectors
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsubsection*
|
\begin_layout Subsubsection*
|
||||||
Local Coordinates
|
Derivative of The Local Coordinate Mapping
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
@ -1112,11 +1112,11 @@ A Simple Euler Scheme
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
To solve the differential equation we can use a simple Euler scheme:
|
To solve the differential equation we can use a simple Euler scheme:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{eqnarray*}
|
\begin{eqnarray}
|
||||||
\theta_{k+1}=\theta_{k}+\dot{\theta}(t_{k})\Delta_{t} & = & \theta_{k}+H(\theta_{k})^{-1}\,\omega_{k}^{b}\Delta_{t}\\
|
\theta_{k+1}=\theta_{k}+\dot{\theta}(t_{k})\Delta_{t} & = & \theta_{k}+H(\theta_{k})^{-1}\,\omega_{k}^{b}\Delta_{t}\label{eq:euler_theta}\\
|
||||||
p_{k+1}=p_{k}+\dot{p}_{v}(t_{k})\Delta_{t} & = & p_{k}+v_{k}\Delta_{t}\\
|
p_{k+1}=p_{k}+\dot{p}_{v}(t_{k})\Delta_{t} & = & p_{k}+v_{k}\Delta_{t}\label{eq:euler_p}\\
|
||||||
v_{k+1}=v_{k}+\dot{v}_{a}(t_{k})\Delta_{t} & = & v_{k}+\exp\left(\theta_{k}\right)a_{k}^{b}\Delta_{t}
|
v_{k+1}=v_{k}+\dot{v}_{a}(t_{k})\Delta_{t} & = & v_{k}+\exp\left(\Skew{\theta_{k}}\right)a_{k}^{b}\Delta_{t}\label{eq:euler_v}
|
||||||
\end{eqnarray*}
|
\end{eqnarray}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -1135,25 +1135,264 @@ where
|
||||||
.
|
.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Subsubsection*
|
||||||
|
Noise Propagation
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
In the above, we have to think about how to handle both bias
|
Even when we assume uncorrelated noise on
|
||||||
\begin_inset Formula $(b_{g},b_{a})$
|
\begin_inset Formula $\omega^{b}$
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and lever arm
|
|
||||||
\begin_inset Formula $T_{s}^{b}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
Both of them can be seen as arguments to two functions
|
|
||||||
\begin_inset Formula $\omega_{k}^{b}(b_{g})$
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
and
|
and
|
||||||
\begin_inset Formula $a_{k}^{b}(b_{a},T_{s}^{b})$
|
\begin_inset Formula $a^{b}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, and hence we have to properly account for their derivatives.
|
, the noise on the final computed quantities will have a non-trivial covariance
|
||||||
|
structure, because the intermediate quantities
|
||||||
|
\begin_inset Formula $\theta_{k}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $v_{k}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
appear in multiple places.
|
||||||
|
To model the noise propagation, let us define
|
||||||
|
\begin_inset Formula $\zeta_{k}=[\theta_{k},p_{k},v_{k}]$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and rewrite Eqns.
|
||||||
|
(
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:euler_theta"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:euler_v"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) as the non-linear function
|
||||||
|
\begin_inset Formula $f$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\zeta_{k+1}=f\left(\zeta_{k},\omega_{k}^{b},a_{k}^{b}\right)
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Then the noise on
|
||||||
|
\begin_inset Formula $\zeta_{k+1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
propagates as
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\Sigma_{k+1}=A_{k}\Sigma_{k}A_{k}^{T}+B_{k}\Sigma_{\eta}^{gd}B_{k}+C_{k}\Sigma_{\eta}^{ad}C_{k}\label{eq:prop}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $A_{k}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the
|
||||||
|
\begin_inset Formula $9\times9$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
partial derivative of
|
||||||
|
\begin_inset Formula $f$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
wrpt
|
||||||
|
\begin_inset Formula $\zeta$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, and
|
||||||
|
\begin_inset Formula $B_{k}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $C_{k}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
the respective
|
||||||
|
\begin_inset Formula $9\times3$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
partial derivatives with respect to the measured quantities
|
||||||
|
\begin_inset Formula $\omega^{b}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $a^{b}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
Noting that
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
H(\theta)=\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(k+1)!}\Skew{\theta}^{k}\approx I-\frac{1}{2}\Skew{\theta}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
for small
|
||||||
|
\begin_inset Formula $\theta$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, and
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\deriv{\Skew{\theta}\omega}{\theta}=\deriv{\left(\theta\times\omega\right)}{\theta}=-\deriv{\left(\omega\times\theta\right)}{\theta}=-\deriv{\Skew{\omega}\theta}{\theta}=-\Skew{\omega}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
we have
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\deriv{H(\theta)\omega}{\theta}\approx\frac{1}{2}\Skew{\omega}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Similarly,
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\exp\left(\Skew{\theta}\right)=\sum_{k=0}^{\infty}\frac{1}{k!}\Skew{\theta}^{k}\approx I+\Skew{\theta}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and hence
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\deriv{\exp\left(\Skew{\theta}\right)a}{\theta}\approx-\Skew a
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
so we finally obtain
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
A_{k}\approx\left[\begin{array}{ccc}
|
||||||
|
I_{3\times3}+\frac{1}{2}\Skew{\omega_{k}^{b}}\Delta_{t}\\
|
||||||
|
& I_{3\times3} & I_{3\times3}\Delta_{t}\\
|
||||||
|
-\Skew{a_{k}^{b}}\Delta_{t} & & I_{3\times3}
|
||||||
|
\end{array}\right]
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
The other partial derivatives are simply
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
B_{k}=\left[\begin{array}{c}
|
||||||
|
H(\theta_{k})^{-1}\Delta^{t}\\
|
||||||
|
0_{3\times3}\\
|
||||||
|
0_{3\times3}
|
||||||
|
\end{array}\right],\,\,\,\, C_{k}=\left[\begin{array}{c}
|
||||||
|
0_{3\times3}\\
|
||||||
|
0_{3\times3}\\
|
||||||
|
\exp\left(\Skew{\theta_{k}}\right)\Delta_{t}
|
||||||
|
\end{array}\right]
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Substituting these expressions into Eq.
|
||||||
|
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:prop"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and dropping terms involving
|
||||||
|
\begin_inset Formula $\Delta_{t}^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, we obtain
|
||||||
|
\family roman
|
||||||
|
\series medium
|
||||||
|
\shape up
|
||||||
|
\size normal
|
||||||
|
\emph off
|
||||||
|
\bar no
|
||||||
|
\strikeout off
|
||||||
|
\uuline off
|
||||||
|
\uwave off
|
||||||
|
\noun off
|
||||||
|
\color none
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\Sigma_{k+1}=\Sigma_{k}+\left[\begin{array}{ccc}
|
||||||
|
\frac{1}{2}\Skew{\omega_{k}^{b}}\Sigma_{k}^{\theta\theta}-\Sigma_{k}^{\theta\theta}\frac{1}{2}\Skew{\omega_{k}^{b}} & \Sigma_{k}^{\theta v}+\frac{1}{2}\Skew{\omega_{k}^{b}}\Sigma_{k}^{\theta p} & \Sigma_{k}^{\theta\theta}\Skew{a_{k}^{b}}+\frac{1}{2}\Skew{\omega_{k}^{b}}\Sigma_{k}^{\theta v}\\
|
||||||
|
. & \Sigma_{k}^{pv}+\Sigma_{k}^{vp} & \Sigma_{k}^{vv}+\Sigma_{k}^{p\theta}\Skew{a_{k}^{b}}\\
|
||||||
|
. & . & \Sigma_{k}^{v\theta}\Skew{a_{k}^{b}}-\Skew{a_{k}^{b}}\Sigma_{k}^{\theta v}
|
||||||
|
\end{array}\right]\Delta^{t}+\Sigma_{k}^{\eta}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where we only show the upper-triangular part (the matrix is symmetric) and
|
||||||
|
where
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\Sigma_{k}^{\eta}=B_{k}\Sigma_{\eta}^{gd}B_{k}+C_{k}\Sigma_{\eta}^{ad}C_{k}=\left[\begin{array}{ccc}
|
||||||
|
\sigma^{g}I_{3\times3}\\
|
||||||
|
\\
|
||||||
|
& & \sigma^{a}I_{3\times3}
|
||||||
|
\end{array}\right]\Delta_{t}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
The equality in the last line holds in the case of isotropic Gaussian measuremen
|
||||||
|
t noise, in which case
|
||||||
|
\begin_inset Formula $\Sigma_{\eta}^{gd}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
=
|
||||||
|
\begin_inset Formula $\sigma^{g}I_{3\times3}/\Delta_{t}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $\Sigma_{\eta}^{ga}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
=
|
||||||
|
\begin_inset Formula $\sigma^{a}I_{3\times3}/\Delta_{t}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, and used the identities
|
||||||
|
\begin_inset Formula $H(\theta)^{-1}H(\theta)^{-T}\approx I_{3\times3}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
for small
|
||||||
|
\begin_inset Formula $\theta$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, and
|
||||||
|
\begin_inset Formula $\exp\left(\Skew{\theta}\right)\exp\left(\Skew{\theta}\right)^{T}=I_{3\times3}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
for all
|
||||||
|
\begin_inset Formula $\theta$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
|
|
Loading…
Reference in New Issue