Merge pull request #1301 from borglab/hybrid/gaussian-conditional
commit
fc9fc72b17
|
@ -96,8 +96,12 @@ GaussianMixtureFactor::Sum sumFrontals(
|
||||||
}
|
}
|
||||||
|
|
||||||
} else if (f->isContinuous()) {
|
} else if (f->isContinuous()) {
|
||||||
deferredFactors.push_back(
|
if (auto gf = boost::dynamic_pointer_cast<HybridGaussianFactor>(f)) {
|
||||||
boost::dynamic_pointer_cast<HybridGaussianFactor>(f)->inner());
|
deferredFactors.push_back(gf->inner());
|
||||||
|
}
|
||||||
|
if (auto cg = boost::dynamic_pointer_cast<HybridConditional>(f)) {
|
||||||
|
deferredFactors.push_back(cg->asGaussian());
|
||||||
|
}
|
||||||
|
|
||||||
} else if (f->isDiscrete()) {
|
} else if (f->isDiscrete()) {
|
||||||
// Don't do anything for discrete-only factors
|
// Don't do anything for discrete-only factors
|
||||||
|
|
|
@ -115,7 +115,6 @@ inline std::pair<KeyVector, std::vector<int>> makeBinaryOrdering(
|
||||||
/* ***************************************************************************
|
/* ***************************************************************************
|
||||||
*/
|
*/
|
||||||
using MotionModel = BetweenFactor<double>;
|
using MotionModel = BetweenFactor<double>;
|
||||||
// using MotionMixture = MixtureFactor<MotionModel>;
|
|
||||||
|
|
||||||
// Test fixture with switching network.
|
// Test fixture with switching network.
|
||||||
struct Switching {
|
struct Switching {
|
||||||
|
@ -125,7 +124,13 @@ struct Switching {
|
||||||
HybridGaussianFactorGraph linearizedFactorGraph;
|
HybridGaussianFactorGraph linearizedFactorGraph;
|
||||||
Values linearizationPoint;
|
Values linearizationPoint;
|
||||||
|
|
||||||
/// Create with given number of time steps.
|
/**
|
||||||
|
* @brief Create with given number of time steps.
|
||||||
|
*
|
||||||
|
* @param K The total number of timesteps.
|
||||||
|
* @param between_sigma The stddev between poses.
|
||||||
|
* @param prior_sigma The stddev on priors (also used for measurements).
|
||||||
|
*/
|
||||||
Switching(size_t K, double between_sigma = 1.0, double prior_sigma = 0.1)
|
Switching(size_t K, double between_sigma = 1.0, double prior_sigma = 0.1)
|
||||||
: K(K) {
|
: K(K) {
|
||||||
// Create DiscreteKeys for binary K modes, modes[0] will not be used.
|
// Create DiscreteKeys for binary K modes, modes[0] will not be used.
|
||||||
|
@ -166,6 +171,8 @@ struct Switching {
|
||||||
linearizationPoint.insert<double>(X(k), static_cast<double>(k));
|
linearizationPoint.insert<double>(X(k), static_cast<double>(k));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// The ground truth is robot moving forward
|
||||||
|
// and one less than the linearization point
|
||||||
linearizedFactorGraph = *nonlinearFactorGraph.linearize(linearizationPoint);
|
linearizedFactorGraph = *nonlinearFactorGraph.linearize(linearizationPoint);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -500,6 +500,7 @@ TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
TEST(HybridGaussianFactorGraph, optimize) {
|
TEST(HybridGaussianFactorGraph, optimize) {
|
||||||
HybridGaussianFactorGraph hfg;
|
HybridGaussianFactorGraph hfg;
|
||||||
|
|
||||||
|
@ -521,6 +522,46 @@ TEST(HybridGaussianFactorGraph, optimize) {
|
||||||
|
|
||||||
EXPECT(assert_equal(hv.atDiscrete(C(1)), int(0)));
|
EXPECT(assert_equal(hv.atDiscrete(C(1)), int(0)));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
// Test adding of gaussian conditional and re-elimination.
|
||||||
|
TEST(HybridGaussianFactorGraph, Conditionals) {
|
||||||
|
Switching switching(4);
|
||||||
|
HybridGaussianFactorGraph hfg;
|
||||||
|
|
||||||
|
hfg.push_back(switching.linearizedFactorGraph.at(0)); // P(X1)
|
||||||
|
Ordering ordering;
|
||||||
|
ordering.push_back(X(1));
|
||||||
|
HybridBayesNet::shared_ptr bayes_net = hfg.eliminateSequential(ordering);
|
||||||
|
|
||||||
|
hfg.push_back(switching.linearizedFactorGraph.at(1)); // P(X1, X2 | M1)
|
||||||
|
hfg.push_back(*bayes_net);
|
||||||
|
hfg.push_back(switching.linearizedFactorGraph.at(2)); // P(X2, X3 | M2)
|
||||||
|
hfg.push_back(switching.linearizedFactorGraph.at(5)); // P(M1)
|
||||||
|
ordering.push_back(X(2));
|
||||||
|
ordering.push_back(X(3));
|
||||||
|
ordering.push_back(M(1));
|
||||||
|
ordering.push_back(M(2));
|
||||||
|
|
||||||
|
bayes_net = hfg.eliminateSequential(ordering);
|
||||||
|
|
||||||
|
HybridValues result = bayes_net->optimize();
|
||||||
|
|
||||||
|
Values expected_continuous;
|
||||||
|
expected_continuous.insert<double>(X(1), 0);
|
||||||
|
expected_continuous.insert<double>(X(2), 1);
|
||||||
|
expected_continuous.insert<double>(X(3), 2);
|
||||||
|
expected_continuous.insert<double>(X(4), 4);
|
||||||
|
Values result_continuous =
|
||||||
|
switching.linearizationPoint.retract(result.continuous());
|
||||||
|
EXPECT(assert_equal(expected_continuous, result_continuous));
|
||||||
|
|
||||||
|
DiscreteValues expected_discrete;
|
||||||
|
expected_discrete[M(1)] = 1;
|
||||||
|
expected_discrete[M(2)] = 1;
|
||||||
|
EXPECT(assert_equal(expected_discrete, result.discrete()));
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
int main() {
|
int main() {
|
||||||
TestResult tr;
|
TestResult tr;
|
Loading…
Reference in New Issue