GaussianMixtureFactor tests
parent
2396bca22f
commit
fc939b08e0
|
|
@ -51,16 +51,19 @@ GaussianMixtureFactor GaussianMixtureFactor::FromFactors(
|
|||
void GaussianMixtureFactor::print(const std::string &s,
|
||||
const KeyFormatter &formatter) const {
|
||||
HybridFactor::print(s, formatter);
|
||||
std::cout << "]{\n";
|
||||
factors_.print(
|
||||
"mixture = ", [&](Key k) { return formatter(k); },
|
||||
"", [&](Key k) { return formatter(k); },
|
||||
[&](const GaussianFactor::shared_ptr &gf) -> std::string {
|
||||
RedirectCout rd;
|
||||
if (!gf->empty())
|
||||
std::cout << ":\n";
|
||||
if (gf)
|
||||
gf->print("", formatter);
|
||||
else
|
||||
return {"nullptr"};
|
||||
return rd.str();
|
||||
});
|
||||
std::cout << "}" << std::endl;
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
|
|
|
|||
|
|
@ -84,6 +84,19 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
|
|||
const DiscreteKeys &discreteKeys,
|
||||
const Factors &factors);
|
||||
|
||||
/**
|
||||
* @brief Construct a new GaussianMixtureFactor object using a vector of
|
||||
* GaussianFactor shared pointers.
|
||||
*
|
||||
* @param keys Vector of keys for continuous factors.
|
||||
* @param discreteKeys Vector of discrete keys.
|
||||
* @param factors Vector of gaussian factor shared pointers.
|
||||
*/
|
||||
GaussianMixtureFactor(const KeyVector &keys, const DiscreteKeys &discreteKeys,
|
||||
const std::vector<GaussianFactor::shared_ptr> &factors)
|
||||
: GaussianMixtureFactor(keys, discreteKeys,
|
||||
Factors(discreteKeys, factors)) {}
|
||||
|
||||
static This FromFactors(
|
||||
const KeyVector &continuousKeys, const DiscreteKeys &discreteKeys,
|
||||
const std::vector<GaussianFactor::shared_ptr> &factors);
|
||||
|
|
@ -111,6 +124,12 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
|
|||
* @return Sum
|
||||
*/
|
||||
Sum add(const Sum &sum) const;
|
||||
|
||||
/// Add MixtureFactor to a Sum, syntactic sugar.
|
||||
friend Sum &operator+=(Sum &sum, const GaussianMixtureFactor &factor) {
|
||||
sum = factor.add(sum);
|
||||
return sum;
|
||||
}
|
||||
};
|
||||
|
||||
// traits
|
||||
|
|
|
|||
|
|
@ -50,7 +50,10 @@ DiscreteKeys CollectDiscreteKeys(const DiscreteKeys &key1,
|
|||
|
||||
/* ************************************************************************ */
|
||||
HybridFactor::HybridFactor(const KeyVector &keys)
|
||||
: Base(keys), isContinuous_(true), nrContinuous_(keys.size()) {}
|
||||
: Base(keys),
|
||||
isContinuous_(true),
|
||||
nrContinuous_(keys.size()),
|
||||
continuousKeys_(keys) {}
|
||||
|
||||
/* ************************************************************************ */
|
||||
HybridFactor::HybridFactor(const KeyVector &continuousKeys,
|
||||
|
|
@ -60,13 +63,15 @@ HybridFactor::HybridFactor(const KeyVector &continuousKeys,
|
|||
isContinuous_((continuousKeys.size() != 0) && (discreteKeys.size() == 0)),
|
||||
isHybrid_((continuousKeys.size() != 0) && (discreteKeys.size() != 0)),
|
||||
nrContinuous_(continuousKeys.size()),
|
||||
discreteKeys_(discreteKeys) {}
|
||||
discreteKeys_(discreteKeys),
|
||||
continuousKeys_(continuousKeys) {}
|
||||
|
||||
/* ************************************************************************ */
|
||||
HybridFactor::HybridFactor(const DiscreteKeys &discreteKeys)
|
||||
: Base(CollectKeys({}, discreteKeys)),
|
||||
isDiscrete_(true),
|
||||
discreteKeys_(discreteKeys) {}
|
||||
discreteKeys_(discreteKeys),
|
||||
continuousKeys_({}) {}
|
||||
|
||||
/* ************************************************************************ */
|
||||
bool HybridFactor::equals(const HybridFactor &lf, double tol) const {
|
||||
|
|
@ -83,7 +88,17 @@ void HybridFactor::print(const std::string &s,
|
|||
if (isContinuous_) std::cout << "Continuous ";
|
||||
if (isDiscrete_) std::cout << "Discrete ";
|
||||
if (isHybrid_) std::cout << "Hybrid ";
|
||||
this->printKeys("", formatter);
|
||||
for (size_t c=0; c<continuousKeys_.size(); c++) {
|
||||
std::cout << formatter(continuousKeys_.at(c));
|
||||
if (c < continuousKeys_.size() - 1) {
|
||||
std::cout << " ";
|
||||
} else {
|
||||
std::cout << "; ";
|
||||
}
|
||||
}
|
||||
for(auto && discreteKey: discreteKeys_) {
|
||||
std::cout << formatter(discreteKey.first) << " ";
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -52,6 +52,9 @@ class GTSAM_EXPORT HybridFactor : public Factor {
|
|||
protected:
|
||||
DiscreteKeys discreteKeys_;
|
||||
|
||||
/// Record continuous keys for book-keeping
|
||||
KeyVector continuousKeys_;
|
||||
|
||||
public:
|
||||
// typedefs needed to play nice with gtsam
|
||||
typedef HybridFactor This; ///< This class
|
||||
|
|
|
|||
|
|
@ -0,0 +1,159 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file GaussianMixtureFactor.cpp
|
||||
* @brief Unit tests for GaussianMixtureFactor
|
||||
* @author Varun Agrawal
|
||||
* @author Fan Jiang
|
||||
* @author Frank Dellaert
|
||||
* @date December 2021
|
||||
*/
|
||||
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/hybrid/GaussianMixture.h>
|
||||
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using noiseModel::Isotropic;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Check iterators of empty mixture.
|
||||
TEST(GaussianMixtureFactor, Constructor) {
|
||||
GaussianMixtureFactor factor;
|
||||
GaussianMixtureFactor::const_iterator const_it = factor.begin();
|
||||
CHECK(const_it == factor.end());
|
||||
GaussianMixtureFactor::iterator it = factor.begin();
|
||||
CHECK(it == factor.end());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// "Add" two mixture factors together.
|
||||
TEST(GaussianMixtureFactor, Sum) {
|
||||
DiscreteKey m1(1, 2), m2(2, 3);
|
||||
|
||||
auto A1 = Matrix::Zero(2, 1);
|
||||
auto A2 = Matrix::Zero(2, 2);
|
||||
auto A3 = Matrix::Zero(2, 3);
|
||||
auto b = Matrix::Zero(2, 1);
|
||||
Vector2 sigmas;
|
||||
sigmas << 1, 2;
|
||||
auto model = noiseModel::Diagonal::Sigmas(sigmas, true);
|
||||
|
||||
auto f10 = boost::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
|
||||
auto f11 = boost::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
|
||||
auto f20 = boost::make_shared<JacobianFactor>(X(1), A1, X(3), A3, b);
|
||||
auto f21 = boost::make_shared<JacobianFactor>(X(1), A1, X(3), A3, b);
|
||||
auto f22 = boost::make_shared<JacobianFactor>(X(1), A1, X(3), A3, b);
|
||||
std::vector<GaussianFactor::shared_ptr> factorsA{f10, f11};
|
||||
std::vector<GaussianFactor::shared_ptr> factorsB{f20, f21, f22};
|
||||
|
||||
// TODO(Frank): why specify keys at all? And: keys in factor should be *all*
|
||||
// keys, deviating from Kevin's scheme. Should we index DT on DiscreteKey?
|
||||
// Design review!
|
||||
GaussianMixtureFactor mixtureFactorA({X(1), X(2)}, {m1}, factorsA);
|
||||
GaussianMixtureFactor mixtureFactorB({X(1), X(3)}, {m2}, factorsB);
|
||||
|
||||
// Check that number of keys is 3
|
||||
EXPECT_LONGS_EQUAL(3, mixtureFactorA.keys().size());
|
||||
|
||||
// Check that number of discrete keys is 1 // TODO(Frank): should not exist?
|
||||
EXPECT_LONGS_EQUAL(1, mixtureFactorA.discreteKeys().size());
|
||||
|
||||
// Create sum of two mixture factors: it will be a decision tree now on both
|
||||
// discrete variables m1 and m2:
|
||||
GaussianMixtureFactor::Sum sum;
|
||||
sum += mixtureFactorA;
|
||||
sum += mixtureFactorB;
|
||||
|
||||
// Let's check that this worked:
|
||||
Assignment<Key> mode;
|
||||
mode[m1.first] = 1;
|
||||
mode[m2.first] = 2;
|
||||
auto actual = sum(mode);
|
||||
EXPECT(actual.at(0) == f11);
|
||||
EXPECT(actual.at(1) == f22);
|
||||
}
|
||||
|
||||
TEST(GaussianMixtureFactor, Printing) {
|
||||
DiscreteKey m1(1, 2);
|
||||
auto A1 = Matrix::Zero(2, 1);
|
||||
auto A2 = Matrix::Zero(2, 2);
|
||||
auto b = Matrix::Zero(2, 1);
|
||||
auto f10 = boost::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
|
||||
auto f11 = boost::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
|
||||
std::vector<GaussianFactor::shared_ptr> factors{f10, f11};
|
||||
|
||||
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
|
||||
|
||||
std::string expected =
|
||||
R"(Hybrid x1 x2; 1 ]{
|
||||
Choice(1)
|
||||
0 Leaf :
|
||||
A[x1] = [
|
||||
0;
|
||||
0
|
||||
]
|
||||
A[x2] = [
|
||||
0, 0;
|
||||
0, 0
|
||||
]
|
||||
b = [ 0 0 ]
|
||||
No noise model
|
||||
|
||||
1 Leaf :
|
||||
A[x1] = [
|
||||
0;
|
||||
0
|
||||
]
|
||||
A[x2] = [
|
||||
0, 0;
|
||||
0, 0
|
||||
]
|
||||
b = [ 0 0 ]
|
||||
No noise model
|
||||
|
||||
}
|
||||
)";
|
||||
EXPECT(assert_print_equal(expected, mixtureFactor));
|
||||
}
|
||||
|
||||
TEST_UNSAFE(GaussianMixtureFactor, GaussianMixture) {
|
||||
KeyVector keys;
|
||||
keys.push_back(X(0));
|
||||
keys.push_back(X(1));
|
||||
|
||||
DiscreteKeys dKeys;
|
||||
dKeys.emplace_back(M(0), 2);
|
||||
dKeys.emplace_back(M(1), 2);
|
||||
|
||||
auto gaussians = boost::make_shared<GaussianConditional>();
|
||||
GaussianMixture::Conditionals conditionals(gaussians);
|
||||
GaussianMixture gm({}, keys, dKeys, conditionals);
|
||||
|
||||
EXPECT_LONGS_EQUAL(2, gm.discreteKeys().size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
Loading…
Reference in New Issue