Documenting relationship to canonical parameters of a Gaussian
parent
0af5ac2161
commit
fbc8c32ef9
|
|
@ -50,15 +50,29 @@ namespace gtsam {
|
|||
typedef FastMap<Index, SlotEntry> Scatter;
|
||||
|
||||
/**
|
||||
* A general quadratic factor of the form
|
||||
* \f[ e(x) = x^T G x + gx + f \f]
|
||||
* @brief A Gaussian factor using the canonical parameters (information form)
|
||||
*
|
||||
* HessianFactor implements a general quadratic factor of the form
|
||||
* \f[ e(x) = 0.5 x^T G x - x^T g + 0.5 f \f]
|
||||
* that stores the matrix \f$ G \f$, the vector \f$ g \f$, and the constant term \f$ f \f$.
|
||||
*
|
||||
* When \f$ G \f$ is positive semidefinite, this factor represents a Gaussian,
|
||||
* in which case \f$ G \f$ is the information
|
||||
* matrix \f$ \Lambda \f$, which is the inverse of the covariance matrix \f$ \Sigma \f$,
|
||||
* \f$ g \f$ is the information vector \f$ \eta = \Lambda \mu \f$, and \f$ f \f$ is the error
|
||||
* at the mean, when \f$ x = \mu \f$ .
|
||||
* in which case \f$ G \f$ is the information matrix \f$ \Lambda \f$,
|
||||
* \f$ g \f$ is the information vector \f$ \eta \f$, and \f$ f \f$ is the residual
|
||||
* sum-square-error at the mean, when \f$ x = \mu \f$.
|
||||
*
|
||||
* Indeed, the negative log-likelihood of a Gaussian is (up to a constant)
|
||||
* @f$ E(x) = 0.5(x-\mu)^T P^{-1} (x-\mu) @f$
|
||||
* with @f$ \mu @f$ the mean and @f$ P @f$ the covariance matrix. Expanding the product we get
|
||||
* @f[
|
||||
* E(x) = 0.5 x^T P^{-1} x - x^T P^{-1} \mu + 0.5 \mu^T P^{-1} \mu
|
||||
* @f]
|
||||
* We define the Information matrix (or Hessian) @f$ \Lambda = P^{-1} @f$
|
||||
* and the information vector @f$ \eta = P^{-1} \mu = \Lambda \mu @f$
|
||||
* to arrive at the canonical form of the Gaussian:
|
||||
* @f[
|
||||
* E(x) = 0.5 x^T \Lambda x - x^T \eta + 0.5 \mu^T \Lambda \mu + C
|
||||
* @f]
|
||||
*
|
||||
* This factor is one of the factors that can be in a GaussianFactorGraph.
|
||||
* It may be returned from NonlinearFactor::linearize(), but is also
|
||||
|
|
|
|||
Loading…
Reference in New Issue