template on measurement so we can later have StereoPoint2 instead of Point2

release/4.3a0
cbeall3 2014-06-03 15:24:41 -04:00
parent 7a2af9999a
commit fb50e20c82
3 changed files with 104 additions and 103 deletions

View File

@ -36,31 +36,32 @@
namespace gtsam { namespace gtsam {
/// Base class with no internal point, completely functional /// Base class with no internal point, completely functional
template<class POSE, class CALIBRATION, size_t D> template<class POSE, class Z, class CALIBRATION, size_t D>
class SmartFactorBase: public NonlinearFactor { class SmartFactorBase: public NonlinearFactor {
protected: protected:
// Keep a copy of measurement and calibration for I/O // Keep a copy of measurement and calibration for I/O
std::vector<Point2> measured_; ///< 2D measurement for each of the m views std::vector<Z> measured_; ///< 2D measurement for each of the m views
std::vector<SharedNoiseModel> noise_; ///< noise model used std::vector<SharedNoiseModel> noise_; ///< noise model used
///< (important that the order is the same as the keys that we use to create the factor) ///< (important that the order is the same as the keys that we use to create the factor)
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame (one for all cameras) boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame (one for all cameras)
/// Definitions for blocks of F /// Definitions for blocks of F
typedef Eigen::Matrix<double, 2, D> Matrix2D; // F typedef Eigen::Matrix<double, Z::dimension, D> Matrix2D; // F
typedef Eigen::Matrix<double, D, 2> MatrixD2; // F' typedef Eigen::Matrix<double, D, Z::dimension> MatrixD2; // F'
typedef std::pair<Key, Matrix2D> KeyMatrix2D; // Fblocks typedef std::pair<Key, Matrix2D> KeyMatrix2D; // Fblocks
typedef Eigen::Matrix<double, D, D> MatrixDD; // camera hessian block typedef Eigen::Matrix<double, D, D> MatrixDD; // camera hessian block
typedef Eigen::Matrix<double, 2, 3> Matrix23; typedef Eigen::Matrix<double, Z::dimension, 3> Matrix23;
typedef Eigen::Matrix<double, D, 1> VectorD; typedef Eigen::Matrix<double, D, 1> VectorD;
typedef Eigen::Matrix<double, 2, 2> Matrix2; typedef Eigen::Matrix<double, Z::dimension, Z::dimension> Matrix2;
/// shorthand for base class type /// shorthand for base class type
typedef NonlinearFactor Base; typedef NonlinearFactor Base;
/// shorthand for this class /// shorthand for this class
typedef SmartFactorBase<POSE, CALIBRATION, D> This; typedef SmartFactorBase<POSE, Z, CALIBRATION, D> This;
public: public:
@ -89,7 +90,7 @@ public:
* @param poseKey is the index corresponding to the camera observing the landmark * @param poseKey is the index corresponding to the camera observing the landmark
* @param noise_i is the measurement noise * @param noise_i is the measurement noise
*/ */
void add(const Point2& measured_i, const Key& poseKey_i, void add(const Z& measured_i, const Key& poseKey_i,
const SharedNoiseModel& noise_i) { const SharedNoiseModel& noise_i) {
this->measured_.push_back(measured_i); this->measured_.push_back(measured_i);
this->keys_.push_back(poseKey_i); this->keys_.push_back(poseKey_i);
@ -100,7 +101,7 @@ public:
* variant of the previous add: adds a bunch of measurements, together with the camera keys and noises * variant of the previous add: adds a bunch of measurements, together with the camera keys and noises
*/ */
// **************************************************************************************************** // ****************************************************************************************************
void add(std::vector<Point2>& measurements, std::vector<Key>& poseKeys, void add(std::vector<Z>& measurements, std::vector<Key>& poseKeys,
std::vector<SharedNoiseModel>& noises) { std::vector<SharedNoiseModel>& noises) {
for (size_t i = 0; i < measurements.size(); i++) { for (size_t i = 0; i < measurements.size(); i++) {
this->measured_.push_back(measurements.at(i)); this->measured_.push_back(measurements.at(i));
@ -113,7 +114,7 @@ public:
* variant of the previous add: adds a bunch of measurements and uses the same noise model for all of them * variant of the previous add: adds a bunch of measurements and uses the same noise model for all of them
*/ */
// **************************************************************************************************** // ****************************************************************************************************
void add(std::vector<Point2>& measurements, std::vector<Key>& poseKeys, void add(std::vector<Z>& measurements, std::vector<Key>& poseKeys,
const SharedNoiseModel& noise) { const SharedNoiseModel& noise) {
for (size_t i = 0; i < measurements.size(); i++) { for (size_t i = 0; i < measurements.size(); i++) {
this->measured_.push_back(measurements.at(i)); this->measured_.push_back(measurements.at(i));
@ -127,16 +128,16 @@ public:
* The noise is assumed to be the same for all measurements * The noise is assumed to be the same for all measurements
*/ */
// **************************************************************************************************** // ****************************************************************************************************
void add(const SfM_Track& trackToAdd, const SharedNoiseModel& noise) { // void add(const SfM_Track& trackToAdd, const SharedNoiseModel& noise) {
for (size_t k = 0; k < trackToAdd.number_measurements(); k++) { // for (size_t k = 0; k < trackToAdd.number_measurements(); k++) {
this->measured_.push_back(trackToAdd.measurements[k].second); // this->measured_.push_back(trackToAdd.measurements[k].second);
this->keys_.push_back(trackToAdd.measurements[k].first); // this->keys_.push_back(trackToAdd.measurements[k].first);
this->noise_.push_back(noise); // this->noise_.push_back(noise);
} // }
} // }
/** return the measurements */ /** return the measurements */
const std::vector<Point2>& measured() const { const std::vector<Z>& measured() const {
return measured_; return measured_;
} }
@ -179,27 +180,27 @@ public:
} }
// **************************************************************************************************** // ****************************************************************************************************
/// Calculate vector of re-projection errors, before applying noise model // /// Calculate vector of re-projection errors, before applying noise model
Vector reprojectionError(const Cameras& cameras, const Point3& point) const { // Vector reprojectionError(const Cameras& cameras, const Point3& point) const {
//
Vector b = zero(2 * cameras.size()); // Vector b = zero(2 * cameras.size());
//
size_t i = 0; // size_t i = 0;
BOOST_FOREACH(const Camera& camera, cameras) { // BOOST_FOREACH(const Camera& camera, cameras) {
const Point2& zi = this->measured_.at(i); // const Z& zi = this->measured_.at(i);
try { // try {
Point2 e(camera.project(point) - zi); // Z e(camera.project(point) - zi);
b[2 * i] = e.x(); // b[2 * i] = e.x();
b[2 * i + 1] = e.y(); // b[2 * i + 1] = e.y();
} catch (CheiralityException& e) { // } catch (CheiralityException& e) {
std::cout << "Cheirality exception " << std::endl; // std::cout << "Cheirality exception " << std::endl;
exit(EXIT_FAILURE); // exit(EXIT_FAILURE);
} // }
i += 1; // i += 1;
} // }
//
return b; // return b;
} // }
// **************************************************************************************************** // ****************************************************************************************************
/** /**
@ -216,9 +217,9 @@ public:
size_t i = 0; size_t i = 0;
BOOST_FOREACH(const Camera& camera, cameras) { BOOST_FOREACH(const Camera& camera, cameras) {
const Point2& zi = this->measured_.at(i); const Z& zi = this->measured_.at(i);
try { try {
Point2 reprojectionError(camera.project(point) - zi); Z reprojectionError(camera.project(point) - zi);
overallError += 0.5 overallError += 0.5
* this->noise_.at(i)->distance(reprojectionError.vector()); * this->noise_.at(i)->distance(reprojectionError.vector());
} catch (CheiralityException&) { } catch (CheiralityException&) {
@ -232,28 +233,28 @@ public:
// **************************************************************************************************** // ****************************************************************************************************
/// Assumes non-degenerate ! /// Assumes non-degenerate !
void computeEP(Matrix& E, Matrix& PointCov, const Cameras& cameras, // void computeEP(Matrix& E, Matrix& PointCov, const Cameras& cameras,
const Point3& point) const { // const Point3& point) const {
//
int numKeys = this->keys_.size(); // int numKeys = this->keys_.size();
E = zeros(2 * numKeys, 3); // E = zeros(2 * numKeys, 3);
Vector b = zero(2 * numKeys); // Vector b = zero(2 * numKeys);
//
Matrix Ei(2, 3); // Matrix Ei(2, 3);
for (size_t i = 0; i < this->measured_.size(); i++) { // for (size_t i = 0; i < this->measured_.size(); i++) {
try { // try {
cameras[i].project(point, boost::none, Ei); // cameras[i].project(point, boost::none, Ei);
} catch (CheiralityException& e) { // } catch (CheiralityException& e) {
std::cout << "Cheirality exception " << std::endl; // std::cout << "Cheirality exception " << std::endl;
exit(EXIT_FAILURE); // exit(EXIT_FAILURE);
} // }
this->noise_.at(i)->WhitenSystem(Ei, b); // this->noise_.at(i)->WhitenSystem(Ei, b);
E.block<2, 3>(2 * i, 0) = Ei; // E.block<2, 3>(2 * i, 0) = Ei;
} // }
//
// Matrix PointCov; // // Matrix PointCov;
PointCov.noalias() = (E.transpose() * E).inverse(); // PointCov.noalias() = (E.transpose() * E).inverse();
} // }
// **************************************************************************************************** // ****************************************************************************************************
/// Compute F, E only (called below in both vanilla and SVD versions) /// Compute F, E only (called below in both vanilla and SVD versions)
@ -262,11 +263,11 @@ public:
Vector& b, const Cameras& cameras, const Point3& point) const { Vector& b, const Cameras& cameras, const Point3& point) const {
size_t numKeys = this->keys_.size(); size_t numKeys = this->keys_.size();
E = zeros(2 * numKeys, 3); E = zeros(Z::Dim() * numKeys, 3);
b = zero(2 * numKeys); b = zero(Z::Dim() * numKeys);
double f = 0; double f = 0;
Matrix Fi(2, 6), Ei(2, 3), Hcali(2, D - 6), Hcam(2, D); Matrix Fi(Z::Dim(), 6), Ei(Z::Dim(), 3), Hcali(Z::Dim(), D - 6), Hcam(Z::Dim(), D);
for (size_t i = 0; i < this->measured_.size(); i++) { for (size_t i = 0; i < this->measured_.size(); i++) {
Vector bi; Vector bi;
@ -283,12 +284,12 @@ public:
if (D == 6) { // optimize only camera pose if (D == 6) { // optimize only camera pose
Fblocks.push_back(KeyMatrix2D(this->keys_[i], Fi)); Fblocks.push_back(KeyMatrix2D(this->keys_[i], Fi));
} else { } else {
Hcam.block<2, 6>(0, 0) = Fi; // 2 x 6 block for the cameras Hcam.block<Z::dimension, 6>(0, 0) = Fi; // Z::Dim() x 6 block for the cameras
Hcam.block<2, D - 6>(0, 6) = Hcali; // 2 x nrCal block for the cameras Hcam.block<Z::dimension, D - 6>(0, 6) = Hcali; // Z::Dim() x nrCal block for the cameras
Fblocks.push_back(KeyMatrix2D(this->keys_[i], Hcam)); Fblocks.push_back(KeyMatrix2D(this->keys_[i], Hcam));
} }
E.block<2, 3>(2 * i, 0) = Ei; E.block<Z::dimension, 3>(Z::dimension * i, 0) = Ei;
subInsert(b, bi, 2 * i); subInsert(b, bi, Z::Dim() * i);
} }
return f; return f;
} }
@ -329,10 +330,10 @@ public:
std::vector<KeyMatrix2D> Fblocks; std::vector<KeyMatrix2D> Fblocks;
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point, double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point,
lambda); lambda);
F = zeros(2 * numKeys, D * numKeys); F = zeros(Z::Dim() * numKeys, D * numKeys);
for (size_t i = 0; i < this->keys_.size(); ++i) { for (size_t i = 0; i < this->keys_.size(); ++i) {
F.block<2, D>(2 * i, D * i) = Fblocks.at(i).second; // 2 x 6 block for the cameras F.block<Z::dimension, D>(Z::Dim() * i, D * i) = Fblocks.at(i).second; // Z::Dim() x 6 block for the cameras
} }
return f; return f;
} }
@ -351,9 +352,9 @@ public:
// Do SVD on A // Do SVD on A
Eigen::JacobiSVD<Matrix> svd(E, Eigen::ComputeFullU); Eigen::JacobiSVD<Matrix> svd(E, Eigen::ComputeFullU);
Vector s = svd.singularValues(); Vector s = svd.singularValues();
// Enull = zeros(2 * numKeys, 2 * numKeys - 3); // Enull = zeros(Z::Dim() * numKeys, Z::Dim() * numKeys - 3);
size_t numKeys = this->keys_.size(); size_t numKeys = this->keys_.size();
Enull = svd.matrixU().block(0, 3, 2 * numKeys, 2 * numKeys - 3); // last 2m-3 columns Enull = svd.matrixU().block(0, 3, Z::Dim() * numKeys, Z::Dim() * numKeys - 3); // last Z::Dim()m-3 columns
return f; return f;
} }
@ -367,11 +368,11 @@ public:
int numKeys = this->keys_.size(); int numKeys = this->keys_.size();
std::vector<KeyMatrix2D> Fblocks; std::vector<KeyMatrix2D> Fblocks;
double f = computeJacobiansSVD(Fblocks, Enull, b, cameras, point); double f = computeJacobiansSVD(Fblocks, Enull, b, cameras, point);
F.resize(2 * numKeys, D * numKeys); F.resize(Z::Dim() * numKeys, D * numKeys);
F.setZero(); F.setZero();
for (size_t i = 0; i < this->keys_.size(); ++i) for (size_t i = 0; i < this->keys_.size(); ++i)
F.block<2, D>(2 * i, D * i) = Fblocks.at(i).second; // 2 x 6 block for the cameras F.block<Z::Dim(), D>(Z::Dim() * i, D * i) = Fblocks.at(i).second; // Z::Dim() x 6 block for the cameras
return f; return f;
} }
@ -432,9 +433,9 @@ public:
int numKeys = this->keys_.size(); int numKeys = this->keys_.size();
/// Compute Full F ???? /// Compute Full F ????
Matrix F = zeros(2 * numKeys, D * numKeys); Matrix F = zeros(Z::Dim() * numKeys, D * numKeys);
for (size_t i = 0; i < this->keys_.size(); ++i) for (size_t i = 0; i < this->keys_.size(); ++i)
F.block<2, D>(2 * i, D * i) = Fblocks.at(i).second; // 2 x 6 block for the cameras F.block<Z::Dim(), D>(Z::Dim() * i, D * i) = Fblocks.at(i).second; // Z::Dim() x 6 block for the cameras
Matrix H(D * numKeys, D * numKeys); Matrix H(D * numKeys, D * numKeys);
Vector gs_vector; Vector gs_vector;
@ -472,16 +473,16 @@ public:
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera
const Matrix2D& Fi1 = Fblocks.at(i1).second; const Matrix2D& Fi1 = Fblocks.at(i1).second;
const Matrix23 Ei1_P = E.block<2, 3>(2 * i1, 0) * P; const Matrix23 Ei1_P = E.block<Z::Dim(), 3>(Z::Dim() * i1, 0) * P;
// D = (Dx2) * (2) // D = (Dx2) * (2)
// (augmentedHessian.matrix()).block<D,1> (i1,numKeys+1) = Fi1.transpose() * b.segment < 2 > (2 * i1); // F' * b // (augmentedHessian.matrix()).block<D,1> (i1,numKeys+1) = Fi1.transpose() * b.segment < 2 > (2 * i1); // F' * b
augmentedHessian(i1, numKeys) = Fi1.transpose() * b.segment<2>(2 * i1) // F' * b augmentedHessian(i1, numKeys) = Fi1.transpose() * b.segment<Z::Dim()>(Z::Dim() * i1) // F' * b
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1) - Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (DxZ::Dim()) * (Z::Dim()x3) * (3*Z::Dim()m) * (Z::Dim()m x 1)
// (DxD) = (Dx2) * ( (2xD) - (2x3) * (3x2) * (2xD) ) // (DxD) = (DxZ::Dim()) * ( (Z::Dim()xD) - (Z::Dim()x3) * (3xZ::Dim()) * (Z::Dim()xD) )
augmentedHessian(i1, i1) = Fi1.transpose() augmentedHessian(i1, i1) = Fi1.transpose()
* (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1); * (Fi1 - Ei1_P * E.block<Z::Dim(), 3>(Z::Dim() * i1, 0).transpose() * Fi1);
// upper triangular part of the hessian // upper triangular part of the hessian
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
@ -489,7 +490,7 @@ public:
// (DxD) = (Dx2) * ( (2x2) * (2xD) ) // (DxD) = (Dx2) * ( (2x2) * (2xD) )
augmentedHessian(i1, i2) = -Fi1.transpose() augmentedHessian(i1, i2) = -Fi1.transpose()
* (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2); * (Ei1_P * E.block<Z::Dim(), 3>(Z::Dim() * i2, 0).transpose() * Fi2);
} }
} // end of for over cameras } // end of for over cameras
} }
@ -516,16 +517,16 @@ public:
// X X X X 14 // X X X X 14
const Matrix2D& Fi1 = Fblocks.at(i1).second; const Matrix2D& Fi1 = Fblocks.at(i1).second;
const Matrix23 Ei1_P = E.block<2, 3>(2 * i1, 0) * P; const Matrix23 Ei1_P = E.block<Z::Dim(), 3>(Z::Dim() * i1, 0) * P;
{ // for i1 = i2 { // for i1 = i2
// D = (Dx2) * (2) // D = (Dx2) * (2)
gs.at(i1) = Fi1.transpose() * b.segment<2>(2 * i1) // F' * b gs.at(i1) = Fi1.transpose() * b.segment<Z::Dim()>(Z::Dim() * i1) // F' * b
-Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1) -Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (DxZ::Dim()) * (Z::Dim()x3) * (3*Z::Dim()m) * (Z::Dim()m x 1)
// (DxD) = (Dx2) * ( (2xD) - (2x3) * (3x2) * (2xD) ) // (DxD) = (DxZ::Dim()) * ( (Z::Dim()xD) - (Z::Dim()x3) * (3xZ::Dim()) * (Z::Dim()xD) )
Gs.at(GsIndex) = Fi1.transpose() Gs.at(GsIndex) = Fi1.transpose()
* (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1); * (Fi1 - Ei1_P * E.block<Z::Dim(), 3>(Z::Dim() * i1, 0).transpose() * Fi1);
GsIndex++; GsIndex++;
} }
// upper triangular part of the hessian // upper triangular part of the hessian
@ -534,7 +535,7 @@ public:
// (DxD) = (Dx2) * ( (2x2) * (2xD) ) // (DxD) = (Dx2) * ( (2x2) * (2xD) )
Gs.at(GsIndex) = -Fi1.transpose() Gs.at(GsIndex) = -Fi1.transpose()
* (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2); * (Ei1_P * E.block<Z::Dim(), 3>(Z::Dim() * i2, 0).transpose() * Fi2);
GsIndex++; GsIndex++;
} }
} // end of for over cameras } // end of for over cameras
@ -582,9 +583,9 @@ public:
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera in the current factor for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera in the current factor
const Matrix2D& Fi1 = Fblocks.at(i1).second; const Matrix2D& Fi1 = Fblocks.at(i1).second;
const Matrix23 Ei1_P = E.block<2, 3>(2 * i1, 0) * P; const Matrix23 Ei1_P = E.block<Z::Dim(), 3>(Z::Dim() * i1, 0) * P;
// D = (Dx2) * (2) // D = (DxZ::Dim()) * (Z::Dim())
// allKeys are the list of all camera keys in the group, e.g, (1,3,4,5,7) // allKeys are the list of all camera keys in the group, e.g, (1,3,4,5,7)
// we should map those to a slot in the local (grouped) hessian (0,1,2,3,4) // we should map those to a slot in the local (grouped) hessian (0,1,2,3,4)
// Key cameraKey_i1 = this->keys_[i1]; // Key cameraKey_i1 = this->keys_[i1];
@ -594,15 +595,15 @@ public:
// vectorBlock = augmentedHessian(aug_i1, aug_numKeys).knownOffDiagonal(); // vectorBlock = augmentedHessian(aug_i1, aug_numKeys).knownOffDiagonal();
// add contribution of current factor // add contribution of current factor
augmentedHessian(aug_i1, aug_numKeys) = augmentedHessian(aug_i1, aug_numKeys).knownOffDiagonal() augmentedHessian(aug_i1, aug_numKeys) = augmentedHessian(aug_i1, aug_numKeys).knownOffDiagonal()
+ Fi1.transpose() * b.segment<2>(2 * i1) // F' * b + Fi1.transpose() * b.segment<Z::Dim()>(Z::Dim() * i1) // F' * b
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (Dx2) * (2x3) * (3*2m) * (2m x 1) - Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (DxZ::Dim()) * (Z::Dim()x3) * (3*Z::Dim()m) * (Z::Dim()m x 1)
// (DxD) = (Dx2) * ( (2xD) - (2x3) * (3x2) * (2xD) ) // (DxD) = (DxZ::Dim()) * ( (Z::Dim()xD) - (Z::Dim()x3) * (3xZ::Dim()) * (Z::Dim()xD) )
// main block diagonal - store previous block // main block diagonal - store previous block
matrixBlock = augmentedHessian(aug_i1, aug_i1); matrixBlock = augmentedHessian(aug_i1, aug_i1);
// add contribution of current factor // add contribution of current factor
augmentedHessian(aug_i1, aug_i1) = matrixBlock + augmentedHessian(aug_i1, aug_i1) = matrixBlock +
( Fi1.transpose() * (Fi1 - Ei1_P * E.block<2, 3>(2 * i1, 0).transpose() * Fi1) ); ( Fi1.transpose() * (Fi1 - Ei1_P * E.block<Z::Dim(), 3>(Z::Dim() * i1, 0).transpose() * Fi1) );
// upper triangular part of the hessian // upper triangular part of the hessian
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
@ -611,12 +612,12 @@ public:
//Key cameraKey_i2 = this->keys_[i2]; //Key cameraKey_i2 = this->keys_[i2];
DenseIndex aug_i2 = KeySlotMap[this->keys_[i2]]; DenseIndex aug_i2 = KeySlotMap[this->keys_[i2]];
// (DxD) = (Dx2) * ( (2x2) * (2xD) ) // (DxD) = (DxZ::Dim()) * ( (Z::Dim()xZ::Dim()) * (Z::Dim()xD) )
// off diagonal block - store previous block // off diagonal block - store previous block
// matrixBlock = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal(); // matrixBlock = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal();
// add contribution of current factor // add contribution of current factor
augmentedHessian(aug_i1, aug_i2) = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal() augmentedHessian(aug_i1, aug_i2) = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal()
- Fi1.transpose() * (Ei1_P * E.block<2, 3>(2 * i2, 0).transpose() * Fi2); - Fi1.transpose() * (Ei1_P * E.block<Z::Dim(), 3>(Z::Dim() * i2, 0).transpose() * Fi2);
} }
} // end of for over cameras } // end of for over cameras
@ -654,7 +655,7 @@ public:
size_t numKeys = this->keys_.size(); size_t numKeys = this->keys_.size();
std::vector < KeyMatrix2D > Fblocks; std::vector < KeyMatrix2D > Fblocks;
Vector b; Vector b;
Matrix Enull(2*numKeys, 2*numKeys-3); Matrix Enull(Z::Dim()*numKeys, Z::Dim()*numKeys-3);
computeJacobiansSVD(Fblocks, Enull, b, cameras, point, lambda); computeJacobiansSVD(Fblocks, Enull, b, cameras, point, lambda);
return boost::make_shared< JacobianFactorSVD<6> >(Fblocks, Enull, b); return boost::make_shared< JacobianFactorSVD<6> >(Fblocks, Enull, b);
} }

View File

@ -62,7 +62,7 @@ enum LinearizationMode {
* TODO: why LANDMARK parameter? * TODO: why LANDMARK parameter?
*/ */
template<class POSE, class LANDMARK, class CALIBRATION, size_t D> template<class POSE, class LANDMARK, class CALIBRATION, size_t D>
class SmartProjectionFactor: public SmartFactorBase<POSE, CALIBRATION, D> { class SmartProjectionFactor: public SmartFactorBase<POSE, gtsam::Point2, CALIBRATION, D> {
protected: protected:
// Some triangulation parameters // Some triangulation parameters
@ -92,7 +92,7 @@ protected:
typedef boost::shared_ptr<SmartProjectionFactorState> SmartFactorStatePtr; typedef boost::shared_ptr<SmartProjectionFactorState> SmartFactorStatePtr;
/// shorthand for base class type /// shorthand for base class type
typedef SmartFactorBase<POSE, CALIBRATION, D> Base; typedef SmartFactorBase<POSE, gtsam::Point2, CALIBRATION, D> Base;
double landmarkDistanceThreshold_; // if the landmark is triangulated at a double landmarkDistanceThreshold_; // if the landmark is triangulated at a
// distance larger than that the factor is considered degenerate // distance larger than that the factor is considered degenerate

View File

@ -62,7 +62,7 @@ enum LinearizationMode {
* TODO: why LANDMARK parameter? * TODO: why LANDMARK parameter?
*/ */
template<class POSE, class LANDMARK, class CALIBRATION, size_t D> template<class POSE, class LANDMARK, class CALIBRATION, size_t D>
class SmartStereoProjectionFactor: public SmartFactorBase<POSE, CALIBRATION, D> { class SmartStereoProjectionFactor: public SmartFactorBase<POSE, gtsam::Point2, CALIBRATION, D> {
protected: protected:
// Some triangulation parameters // Some triangulation parameters
@ -92,7 +92,7 @@ protected:
typedef boost::shared_ptr<SmartStereoProjectionFactorState> SmartFactorStatePtr; typedef boost::shared_ptr<SmartStereoProjectionFactorState> SmartFactorStatePtr;
/// shorthand for base class type /// shorthand for base class type
typedef SmartFactorBase<POSE, CALIBRATION, D> Base; typedef SmartFactorBase<POSE, gtsam::Point2, CALIBRATION, D> Base;
double landmarkDistanceThreshold_; // if the landmark is triangulated at a double landmarkDistanceThreshold_; // if the landmark is triangulated at a
// distance larger than that the factor is considered degenerate // distance larger than that the factor is considered degenerate