25% performance increase by improving weighted_eliminate

release/4.3a0
Frank Dellaert 2010-01-16 04:57:58 +00:00
parent 26246188af
commit fb3e38b161
5 changed files with 79 additions and 38 deletions

View File

@ -297,55 +297,16 @@ void householder_update(Matrix &A, int j, double beta, const Vector& vjm) {
}
/* ************************************************************************* */
list<boost::tuple<Vector, double, double> >
weighted_eliminate(Matrix& A, Vector& b, const Vector& sigmas) {
bool verbose = false;
size_t m = A.size1(), n = A.size2(); // get size(A)
size_t maxRank = min(m,n);
// create list
list<boost::tuple<Vector, double, double> > results;
// We loop over all columns, because the columns that can be eliminated
// are not necessarily contiguous. For each one, estimate the corresponding
// scalar variable x as d-rS, with S the separator (remaining columns).
// Then update A and b by substituting x with d-rS, zero-ing out x's column.
for (int j=0; j<n; ++j) {
// extract the first column of A
Vector a(column(A, j));
if (verbose) print(a,"a = ");
// Calculate weighted pseudo-inverse and corresponding precision
Vector pseudo; double precision;
boost::tie(pseudo, precision) = weightedPseudoinverse(a, sigmas);
if (verbose) cout << "precision = " << precision << endl;
// if precision is zero, no information on this column
if (precision < 1e-8) continue;
if (verbose) print(pseudo, "pseudo = ");
// create solution and copy into r
Vector r(basis(n, j));
for (int j2=j+1; j2<n; ++j2)
r(j2) = inner_prod(pseudo, column(A, j2));
if (verbose) print(r, "r = ");
// create the rhs
double d = inner_prod(pseudo, b);
if (verbose) cout << "d = " << d << endl;
// construct solution (r, d, sigma)
results.push_back(boost::make_tuple(r, d, 1./sqrt(precision)));
// exit after rank exhausted
if (results.size()>=maxRank) break;
// update A, b
// A' \define A_{S}-ar and b'\define b-ad
__attribute__ ((noinline)) // uncomment to prevent inlining when profiling
void updateAb(Matrix& A, Vector& b, int j, const Vector& a, const Vector& r, double d) {
const size_t m = A.size1(), n = A.size2();
for (int i = 0; i < m; ++i) { // update all rows
double ai = a(i);
b(i) -= ai * d;
double *Aptr = A.data().begin() + i * n + j + 1;
double *rptr = r.data().begin()+j+1;
const double *rptr = r.data().begin() + j + 1;
for (int j2 = j + 1; j2 < n; ++j2) { // limit to only columns in separator
//A(i,j2) -= ai*r(j2);
*Aptr -= ai * *rptr;
@ -353,8 +314,57 @@ weighted_eliminate(Matrix& A, Vector& b, const Vector& sigmas) {
rptr++;
}
}
if (verbose) print(sub(A,0,m,j+1,n), "updated A");
if (verbose) print(b, "updated b ");
}
/* ************************************************************************* */
list<boost::tuple<Vector, double, double> >
weighted_eliminate(Matrix& A, Vector& b, const Vector& sigmas) {
size_t m = A.size1(), n = A.size2(); // get size(A)
size_t maxRank = min(m,n);
// create list
list<boost::tuple<Vector, double, double> > results;
Vector pseudo(m); // allocate storage for pseudo-inverse
// TODO: calculate weights once
// Vector weights =
// We loop over all columns, because the columns that can be eliminated
// are not necessarily contiguous. For each one, estimate the corresponding
// scalar variable x as d-rS, with S the separator (remaining columns).
// Then update A and b by substituting x with d-rS, zero-ing out x's column.
for (int j=0; j<n; ++j) {
// extract the first column of A
// TODO: this is an allocate and a copy
// can we somehow make a "reference" vector, boost magic
Vector a(column(A, j));
// Calculate weighted pseudo-inverse and corresponding precision
// TODO: pass in weights which are calculated once
// TODO return variance
double precision = weightedPseudoinverse(a, sigmas, pseudo);
// if precision is zero, no information on this column
if (precision < 1e-8) continue;
// create solution and copy into r
Vector r(basis(n, j));
for (int j2=j+1; j2<n; ++j2)
r(j2) = inner_prod(pseudo, column(A, j2));
// create the rhs
double d = inner_prod(pseudo, b);
// construct solution (r, d, sigma)
results.push_back(boost::make_tuple(r, d, 1./sqrt(precision)));
// exit after rank exhausted
if (results.size()>=maxRank) break;
// update A, b, expensive, suing outer product
// A' \define A_{S}-a*r and b'\define b-d*a
updateAb(A, b, j, a, r, d);
}
return results;

View File

@ -222,32 +222,54 @@ namespace gtsam {
}
/* ************************************************************************* */
pair<Vector, double> weightedPseudoinverse(const Vector& a, const Vector& sigmas) {
// Fast version *no error checking* !
// Pass in initialized vector of size m or will crash !
double weightedPseudoinverse(const Vector& a, const Vector& sigmas, Vector& pseudo) {
size_t m = sigmas.size();
if (a.size() != m)
throw invalid_argument("V and precisions have different sizes!");
// If there is a valid (a!=0) constraint (sigma==0) return the first one
for(int i=0; i<m; ++i)
if (sigmas[i] < 1e-9 && fabs(a[i]) > 1e-9)
return make_pair(delta(m,i,1/a[i]), std::numeric_limits<double>::infinity());
if (sigmas[i] < 1e-9 && fabs(a[i]) > 1e-9) {
pseudo=delta(m,i,1/a[i]);
return std::numeric_limits<double>::infinity();
}
// Form psuedo-inverse inv(a'inv(Sigma)a)a'inv(Sigma)
// For diagonal Sigma, inv(Sigma) = diag(precisions)
double precision = 0;
Vector precisions(m);
// pseudo will be used to store both precisions (an intermediate) and result
Vector& precisions = pseudo;
for(int i = 0; i<m; i++) {
if (fabs(a[i]) < 1e-9) // also catches remaining sigma==0 rows
double ai=a[i];
if (fabs(ai) < 1e-9) // also catches remaining sigma==0 rows
precisions[i] = 0.;
else {
precisions[i] = 1./(sigmas[i]*sigmas[i]);
precision += a[i]*a[i]*precisions[i];
double si=sigmas[i],pi = 1./(si*si);
precision += ai*ai*pi;
precisions[i] = pi;
}
}
// precision = a'inv(Sigma)a
if (precision<1e-9) return make_pair(zero(m), precision);
Vector pseudo(emul(precisions,a));
return make_pair(pseudo/precision, precision);
if (precision<1e-9)
for(int i = 0; i<m; i++) pseudo[i]=0;
else {
// emul(precisions,a)/precision
double f = 1.0/precision;
for(int i = 0; i<m; i++)
pseudo[i]=f*precisions[i]*a[i];
}
return precision;
}
/* ************************************************************************* */
// Slow version with error checking
pair<Vector, double> weightedPseudoinverse(const Vector& a, const Vector& sigmas) {
size_t m = sigmas.size();
if (a.size() != m)
throw invalid_argument("V and precisions have different sizes!");
Vector pseudo(m);
double precision = weightedPseudoinverse(a, sigmas, pseudo);
return make_pair(pseudo, precision);
}
/* ************************************************************************* */

View File

@ -192,6 +192,13 @@ std::pair<double,Vector> house(Vector &x);
*/
std::pair<Vector, double> weightedPseudoinverse(const Vector& v, const Vector& sigmas);
/*
* Fast version *no error checking* !
* Pass in initialized vector pseudo of size(sigma) or will crash !
* @return the precision, pseudoinverse in third argument
*/
double weightedPseudoinverse(const Vector& a, const Vector& sigmas, Vector& pseudo);
/**
* concatenate Vectors
*/

View File

@ -13,6 +13,7 @@ using namespace std;
#include <boost/tuple/tuple.hpp>
#include "Matrix.h"
#include "GaussianFactor.h"
#include "GaussianConditional.h"
using namespace gtsam;
@ -66,7 +67,7 @@ int main()
b2(6) = 2;
b2(7) = -1;
GaussianFactor combined("x2", Ax2, "l1", Al1, "x1", Ax1, b2);
GaussianFactor combined("x2", Ax2, "l1", Al1, "x1", Ax1, b2,1);
long timeLog = clock();
int n = 1000000;
GaussianConditional::shared_ptr conditional;

View File

@ -51,10 +51,11 @@ TEST(timeGaussianFactorGraph, linearTime)
/* ************************************************************************* */
TEST(timeGaussianFactorGraph, planar)
{
// 1740: 8.12, 8.12, 8.12, 8.16, 8.14
// 1741: 8.12, 8.12, 8.12, 8.16, 8.14
// 1742: 5.99, 5.97, 5.97, 6.02, 5.97
int N = 30;
double time = timePlanarSmoother(N); cout << time << endl;
DOUBLES_EQUAL(8.12,time,0.1);
DOUBLES_EQUAL(5.97,time,0.1);
}
/* ************************************************************************* */