likelihood method for GaussianConditionals

release/4.3a0
Frank Dellaert 2022-02-09 18:08:31 -05:00
parent f2780481c4
commit fb312f9d98
6 changed files with 85 additions and 4 deletions

View File

@ -225,13 +225,13 @@ DecisionTreeFactor::shared_ptr DiscreteConditional::likelihood(
/* ****************************************************************************/
DecisionTreeFactor::shared_ptr DiscreteConditional::likelihood(
size_t parent_value) const {
size_t frontal) const {
if (nrFrontals() != 1)
throw std::invalid_argument(
"Single value likelihood can only be invoked on single-variable "
"conditional");
DiscreteValues values;
values.emplace(keys_[0], parent_value);
values.emplace(keys_[0], frontal);
return likelihood(values);
}

View File

@ -177,7 +177,7 @@ class GTSAM_EXPORT DiscreteConditional
const DiscreteValues& frontalValues) const;
/** Single variable version of likelihood. */
DecisionTreeFactor::shared_ptr likelihood(size_t parent_value) const;
DecisionTreeFactor::shared_ptr likelihood(size_t frontal) const;
/**
* sample

View File

@ -224,6 +224,50 @@ namespace gtsam {
}
}
/* ************************************************************************ */
JacobianFactor::shared_ptr GaussianConditional::likelihood(
const VectorValues& frontalValues) const {
// Error is |Rx - (d - Sy - Tz - ...)|^2
// so when we instantiate x (which has to be completely known) we beget:
// |Sy + Tz + ... - (d - Rx)|^2
// The noise model just transfers over!
// Get frontalValues as vector
const Vector x =
frontalValues.vector(KeyVector(beginFrontals(), endFrontals()));
// Copy the augmented Jacobian matrix:
auto newAb = Ab_;
// Restrict view to parent blocks
newAb.firstBlock() += nrFrontals_;
// Update right-hand-side (last column)
auto last = newAb.matrix().cols() - 1;
const auto RR = R().triangularView<Eigen::Upper>();
newAb.matrix().col(last) -= RR * x;
// The keys now do not include the frontal keys:
KeyVector newKeys;
newKeys.reserve(nrParents());
for (auto&& key : parents()) newKeys.push_back(key);
// Hopefully second newAb copy below is optimized out...
return boost::make_shared<JacobianFactor>(newKeys, newAb, model_);
}
/* **************************************************************************/
JacobianFactor::shared_ptr GaussianConditional::likelihood(
const Vector& frontal) const {
if (nrFrontals() != 1)
throw std::invalid_argument(
"GaussianConditional Single value likelihood can only be invoked on "
"single-variable conditional");
VectorValues values;
values.insert(keys_[0], frontal);
return likelihood(values);
}
/* ************************************************************************ */
VectorValues GaussianConditional::sample(const VectorValues& parentsValues,
std::mt19937_64* rng) const {

View File

@ -151,6 +151,13 @@ namespace gtsam {
/** Performs transpose backsubstition in place on values */
void solveTransposeInPlace(VectorValues& gy) const;
/** Convert to a likelihood factor by providing value before bar. */
JacobianFactor::shared_ptr likelihood(
const VectorValues& frontalValues) const;
/** Single variable version of likelihood. */
JacobianFactor::shared_ptr likelihood(const Vector& frontal) const;
/**
* Sample from conditional, zero parent version
* Example:

View File

@ -255,7 +255,7 @@ class VectorValues {
// enabling serialization functionality
void serialize() const;
void html() const;
string html() const;
};
#include <gtsam/linear/GaussianFactor.h>
@ -492,6 +492,9 @@ virtual class GaussianConditional : gtsam::JacobianFactor {
// Standard Interface
gtsam::Key firstFrontalKey() const;
gtsam::VectorValues solve(const gtsam::VectorValues& parents) const;
gtsam::JacobianFactor* likelihood(
const gtsam::VectorValues& frontalValues) const;
gtsam::JacobianFactor* likelihood(Vector frontal) const;
gtsam::VectorValues sample(const gtsam::VectorValues& parents) const;
gtsam::VectorValues sample() const;

View File

@ -340,6 +340,33 @@ TEST(GaussianConditional, FromMeanAndStddev) {
EXPECT_DOUBLES_EQUAL(expected2, conditional2.error(values), 1e-9);
}
/* ************************************************************************* */
// Test likelihood method (conversion to JacobianFactor)
TEST(GaussianConditional, likelihood) {
Matrix A1 = (Matrix(2, 2) << 1., 2., 3., 4.).finished();
const Vector2 b(20, 40), x0(1, 2);
const double sigma = 0.01;
// |x0 - A1 x1 - b|^2
auto conditional =
GaussianConditional::FromMeanAndStddev(X(0), A1, X(1), b, sigma);
VectorValues frontalValues;
frontalValues.insert(X(0), x0);
auto actual1 = conditional.likelihood(frontalValues);
CHECK(actual1);
// |(-A1) x1 - (b - x0)|^2
JacobianFactor expected(X(1), -A1, b - x0,
noiseModel::Isotropic::Sigma(2, sigma));
EXPECT(assert_equal(expected, *actual1, tol));
// Check single vector version
auto actual2 = conditional.likelihood(x0);
CHECK(actual2);
EXPECT(assert_equal(expected, *actual2, tol));
}
/* ************************************************************************* */
// Test sampling
TEST(GaussianConditional, sample) {