Merge remote-tracking branch 'origin/develop' into feature/OptimizeSimilarity
Conflicts: gtsam_unstable/geometry/tests/testSimilarity3.cpprelease/4.3a0
commit
faffcb193e
|
|
@ -6,3 +6,5 @@
|
|||
/examples/Data/pose3example-rewritten.txt
|
||||
*.txt.user
|
||||
*.txt.user.6d59f0c
|
||||
/python-build/
|
||||
*.pydevproject
|
||||
|
|
|
|||
|
|
@ -64,6 +64,8 @@ option(GTSAM_WITH_TBB "Use Intel Threaded Building Blocks (TB
|
|||
option(GTSAM_WITH_EIGEN_MKL "Eigen will use Intel MKL if available" ON)
|
||||
option(GTSAM_WITH_EIGEN_MKL_OPENMP "Eigen, when using Intel MKL, will also use OpenMP for multithreading if available" ON)
|
||||
option(GTSAM_THROW_CHEIRALITY_EXCEPTION "Throw exception when a triangulated point is behind a camera" ON)
|
||||
option(GTSAM_BUILD_PYTHON "Enable/Disable building & installation of Python module" ON)
|
||||
option(GTSAM_ALLOW_DEPRECATED_SINCE_V4 "Allow use of methods/functions deprecated in GTSAM 4" ON)
|
||||
|
||||
# Options relating to MATLAB wrapper
|
||||
# TODO: Check for matlab mex binary before handling building of binaries
|
||||
|
|
@ -82,6 +84,10 @@ if(GTSAM_INSTALL_MATLAB_TOOLBOX AND GTSAM_BUILD_STATIC_LIBRARY)
|
|||
message(FATAL_ERROR "GTSAM_INSTALL_MATLAB_TOOLBOX and GTSAM_BUILD_STATIC_LIBRARY are both enabled. The MATLAB wrapper cannot be compiled with a static GTSAM library because mex modules are themselves shared libraries. If you want a self-contained mex module, enable GTSAM_MEX_BUILD_STATIC_MODULE instead of GTSAM_BUILD_STATIC_LIBRARY.")
|
||||
endif()
|
||||
|
||||
if(GTSAM_BUILD_PYTHON AND GTSAM_ALLOW_DEPRECATED_SINCE_V4)
|
||||
message(FATAL_ERROR "GTSAM_BUILD_PYTHON and GTSAM_ALLOW_DEPRECATED_SINCE_V4 are both enabled. The python module cannot be compiled with deprecated functions turned on. Turn one of the two options off.")
|
||||
endif()
|
||||
|
||||
# Flags for choosing default packaging tools
|
||||
set(CPACK_SOURCE_GENERATOR "TGZ" CACHE STRING "CPack Default Source Generator")
|
||||
set(CPACK_GENERATOR "TGZ" CACHE STRING "CPack Default Binary Generator")
|
||||
|
|
@ -131,7 +137,7 @@ endif()
|
|||
|
||||
if(NOT (${Boost_VERSION} LESS 105600))
|
||||
message("Ignoring Boost restriction on optional lvalue assignment from rvalues")
|
||||
add_definitions(-DBOOST_OPTIONAL_ALLOW_BINDING_TO_RVALUES)
|
||||
add_definitions(-DBOOST_OPTIONAL_ALLOW_BINDING_TO_RVALUES -DBOOST_OPTIONAL_CONFIG_ALLOW_BINDING_TO_RVALUES)
|
||||
endif()
|
||||
|
||||
###############################################################################
|
||||
|
|
@ -158,6 +164,12 @@ else()
|
|||
set(GTSAM_USE_TBB 0) # This will go into config.h
|
||||
endif()
|
||||
|
||||
###############################################################################
|
||||
# Prohibit Timing build mode in combination with TBB
|
||||
if(GTSAM_USE_TBB AND (CMAKE_BUILD_TYPE STREQUAL "Timing"))
|
||||
message(FATAL_ERROR "Timing build mode cannot be used together with TBB. Use a sampling profiler such as Instruments or Intel VTune Amplifier instead.")
|
||||
endif()
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Find Google perftools
|
||||
|
|
@ -173,6 +185,11 @@ if(MKL_FOUND AND GTSAM_WITH_EIGEN_MKL)
|
|||
set(EIGEN_USE_MKL_ALL 1) # This will go into config.h - it makes Eigen use MKL
|
||||
include_directories(${MKL_INCLUDE_DIR})
|
||||
list(APPEND GTSAM_ADDITIONAL_LIBRARIES ${MKL_LIBRARIES})
|
||||
|
||||
# --no-as-needed is required with gcc according to the MKL link advisor
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
|
||||
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -Wl,--no-as-needed")
|
||||
endif()
|
||||
else()
|
||||
set(GTSAM_USE_EIGEN_MKL 0)
|
||||
set(EIGEN_USE_MKL_ALL 0)
|
||||
|
|
@ -266,7 +283,8 @@ endif()
|
|||
|
||||
# Include boost - use 'BEFORE' so that a specific boost specified to CMake
|
||||
# takes precedence over a system-installed one.
|
||||
include_directories(BEFORE ${Boost_INCLUDE_DIR})
|
||||
# Use 'SYSTEM' to ignore compiler warnings in Boost headers
|
||||
include_directories(BEFORE SYSTEM ${Boost_INCLUDE_DIR})
|
||||
|
||||
# Add includes for source directories 'BEFORE' boost and any system include
|
||||
# paths so that the compiler uses GTSAM headers in our source directory instead
|
||||
|
|
@ -293,10 +311,21 @@ if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
|
|||
endif()
|
||||
endif()
|
||||
|
||||
# As of XCode 7, clang also complains about this
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
|
||||
if (NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 7.0)
|
||||
add_definitions(-Wno-unused-local-typedefs)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(GTSAM_ENABLE_CONSISTENCY_CHECKS)
|
||||
add_definitions(-DGTSAM_EXTRA_CONSISTENCY_CHECKS)
|
||||
endif()
|
||||
|
||||
if(GTSAM_ALLOW_DEPRECATED_SINCE_V4)
|
||||
add_definitions(-DGTSAM_ALLOW_DEPRECATED_SINCE_V4)
|
||||
endif()
|
||||
|
||||
###############################################################################
|
||||
# Add components
|
||||
|
||||
|
|
@ -325,6 +354,20 @@ if (GTSAM_INSTALL_MATLAB_TOOLBOX)
|
|||
add_subdirectory(matlab)
|
||||
endif()
|
||||
|
||||
# Python wrap
|
||||
if (GTSAM_BUILD_PYTHON)
|
||||
include(GtsamPythonWrap)
|
||||
|
||||
# NOTE: The automatic generation of python wrapper from the gtsampy.h interface is
|
||||
# not working yet, so we're using a handwritten wrapper files on python/handwritten.
|
||||
# Once the python wrapping from the interface file is working, you can _swap_ the
|
||||
# comments on the next lines
|
||||
|
||||
# wrap_and_install_python(gtsampy.h "${GTSAM_ADDITIONAL_LIBRARIES}" "")
|
||||
add_subdirectory(python)
|
||||
|
||||
endif()
|
||||
|
||||
# Build gtsam_unstable
|
||||
if (GTSAM_BUILD_UNSTABLE)
|
||||
add_subdirectory(gtsam_unstable)
|
||||
|
|
@ -375,6 +418,8 @@ set(CPACK_DEBIAN_PACKAGE_DEPENDS "libboost-dev (>= 1.43)") #Example: "libc6 (>=
|
|||
# Print configuration variables
|
||||
message(STATUS "===============================================================")
|
||||
message(STATUS "================ Configuration Options ======================")
|
||||
message(STATUS " CMAKE_CXX_COMPILER_ID type : ${CMAKE_CXX_COMPILER_ID}")
|
||||
message(STATUS " CMAKE_CXX_COMPILER_VERSION : ${CMAKE_CXX_COMPILER_VERSION}")
|
||||
message(STATUS "Build flags ")
|
||||
print_config_flag(${GTSAM_BUILD_TESTS} "Build Tests ")
|
||||
print_config_flag(${GTSAM_BUILD_EXAMPLES_ALWAYS} "Build examples with 'make all' ")
|
||||
|
|
@ -435,10 +480,22 @@ print_config_flag(${GTSAM_USE_QUATERNIONS} "Quaternions as default R
|
|||
print_config_flag(${GTSAM_ENABLE_CONSISTENCY_CHECKS} "Runtime consistency checking ")
|
||||
print_config_flag(${GTSAM_ROT3_EXPMAP} "Rot3 retract is full ExpMap ")
|
||||
print_config_flag(${GTSAM_POSE3_EXPMAP} "Pose3 retract is full ExpMap ")
|
||||
print_config_flag(${GTSAM_ALLOW_DEPRECATED_SINCE_V4} "Deprecated in GTSAM 4 allowed ")
|
||||
|
||||
message(STATUS "MATLAB toolbox flags ")
|
||||
print_config_flag(${GTSAM_INSTALL_MATLAB_TOOLBOX} "Install matlab toolbox ")
|
||||
print_config_flag(${GTSAM_BUILD_WRAP} "Build Wrap ")
|
||||
|
||||
message(STATUS "Python module flags ")
|
||||
|
||||
if(GTSAM_PYTHON_WARNINGS)
|
||||
message(STATUS " Build python module : No - dependencies missing")
|
||||
else()
|
||||
print_config_flag(${GTSAM_BUILD_PYTHON} "Build python module ")
|
||||
endif()
|
||||
if(GTSAM_BUILD_PYTHON)
|
||||
message(STATUS " Python version : ${GTSAM_PYTHON_VERSION}")
|
||||
endif()
|
||||
message(STATUS "===============================================================")
|
||||
|
||||
# Print warnings at the end
|
||||
|
|
@ -451,6 +508,9 @@ endif()
|
|||
if(GTSAM_WITH_EIGEN_MKL_OPENMP AND NOT OPENMP_FOUND AND MKL_FOUND)
|
||||
message(WARNING "Your compiler does not support OpenMP - this is ok, but performance may be improved with OpenMP. Set GTSAM_WITH_EIGEN_MKL_OPENMP to 'Off' to avoid this warning.")
|
||||
endif()
|
||||
if(GTSAM_BUILD_PYTHON AND GTSAM_PYTHON_WARNINGS)
|
||||
message(WARNING "${GTSAM_PYTHON_WARNINGS}")
|
||||
endif()
|
||||
|
||||
# Include CPack *after* all flags
|
||||
include(CPack)
|
||||
|
|
|
|||
|
|
@ -31,6 +31,7 @@ Prerequisites:
|
|||
|
||||
- [Boost](http://www.boost.org/users/download/) >= 1.43 (Ubuntu: `sudo apt-get install libboost-all-dev`)
|
||||
- [CMake](http://www.cmake.org/cmake/resources/software.html) >= 2.6 (Ubuntu: `sudo apt-get install cmake`)
|
||||
- A modern compiler, i.e., at least gcc 4.7.3 on Linux.
|
||||
|
||||
Optional prerequisites - used automatically if findable by CMake:
|
||||
|
||||
|
|
@ -46,6 +47,6 @@ See the [`INSTALL`](INSTALL) file for more detailed installation instructions.
|
|||
|
||||
GTSAM is open source under the BSD license, see the [`LICENSE`](LICENSE) and [`LICENSE.BSD`](LICENSE.BSD) files.
|
||||
|
||||
Please see the [`examples/`](examples) directory and the [`USAGE`](USAGE.md) file for examples on how to use GTSAM.
|
||||
|
||||
Please see the [`examples/`](examples) directory and the [`USAGE`](USAGE.md) file for examples on how to use GTSAM.
|
||||
|
||||
GTSAM was developed in the lab of [Frank Dellaert](http://www.cc.gatech.edu/~dellaert) at the [Georgia Institute of Technology](http://www.gatech.edu), with the help of many contributors over the years, see [THANKS](THANKS).
|
||||
4
THANKS
4
THANKS
|
|
@ -38,6 +38,10 @@ at Uni Zurich:
|
|||
|
||||
* Christian Forster
|
||||
|
||||
at LAAS-CNRS
|
||||
|
||||
* Ellon Paiva
|
||||
|
||||
Many thanks for your hard work!!!!
|
||||
|
||||
Frank Dellaert
|
||||
|
|
|
|||
|
|
@ -0,0 +1,102 @@
|
|||
# - Find the NumPy libraries
|
||||
# This module finds if NumPy is installed, and sets the following variables
|
||||
# indicating where it is.
|
||||
#
|
||||
# TODO: Update to provide the libraries and paths for linking npymath lib.
|
||||
#
|
||||
# NUMPY_FOUND - was NumPy found
|
||||
# NUMPY_VERSION - the version of NumPy found as a string
|
||||
# NUMPY_VERSION_MAJOR - the major version number of NumPy
|
||||
# NUMPY_VERSION_MINOR - the minor version number of NumPy
|
||||
# NUMPY_VERSION_PATCH - the patch version number of NumPy
|
||||
# NUMPY_VERSION_DECIMAL - e.g. version 1.6.1 is 10601
|
||||
# NUMPY_INCLUDE_DIRS - path to the NumPy include files
|
||||
|
||||
#============================================================================
|
||||
# Copyright 2012 Continuum Analytics, Inc.
|
||||
#
|
||||
# MIT License
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining
|
||||
# a copy of this software and associated documentation files
|
||||
# (the "Software"), to deal in the Software without restriction, including
|
||||
# without limitation the rights to use, copy, modify, merge, publish,
|
||||
# distribute, sublicense, and/or sell copies of the Software, and to permit
|
||||
# persons to whom the Software is furnished to do so, subject to
|
||||
# the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included
|
||||
# in all copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||||
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
||||
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||||
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
# OTHER DEALINGS IN THE SOFTWARE.
|
||||
#
|
||||
#============================================================================
|
||||
|
||||
# Finding NumPy involves calling the Python interpreter
|
||||
if(NumPy_FIND_REQUIRED)
|
||||
find_package(PythonInterp REQUIRED)
|
||||
else()
|
||||
find_package(PythonInterp)
|
||||
endif()
|
||||
|
||||
if(NOT PYTHONINTERP_FOUND)
|
||||
set(NUMPY_FOUND FALSE)
|
||||
return()
|
||||
endif()
|
||||
|
||||
execute_process(COMMAND "${PYTHON_EXECUTABLE}" "-c"
|
||||
"import numpy as n; print(n.__version__); print(n.get_include());"
|
||||
RESULT_VARIABLE _NUMPY_SEARCH_SUCCESS
|
||||
OUTPUT_VARIABLE _NUMPY_VALUES_OUTPUT
|
||||
ERROR_VARIABLE _NUMPY_ERROR_VALUE
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
|
||||
if(NOT _NUMPY_SEARCH_SUCCESS MATCHES 0)
|
||||
if(NumPy_FIND_REQUIRED)
|
||||
message(FATAL_ERROR
|
||||
"NumPy import failure:\n${_NUMPY_ERROR_VALUE}")
|
||||
endif()
|
||||
set(NUMPY_FOUND FALSE)
|
||||
return()
|
||||
endif()
|
||||
|
||||
# Convert the process output into a list
|
||||
string(REGEX REPLACE ";" "\\\\;" _NUMPY_VALUES ${_NUMPY_VALUES_OUTPUT})
|
||||
string(REGEX REPLACE "\n" ";" _NUMPY_VALUES ${_NUMPY_VALUES})
|
||||
# Just in case there is unexpected output from the Python command.
|
||||
list(GET _NUMPY_VALUES -2 NUMPY_VERSION)
|
||||
list(GET _NUMPY_VALUES -1 NUMPY_INCLUDE_DIRS)
|
||||
|
||||
string(REGEX MATCH "^[0-9]+\\.[0-9]+\\.[0-9]+" _VER_CHECK "${NUMPY_VERSION}")
|
||||
if("${_VER_CHECK}" STREQUAL "")
|
||||
# The output from Python was unexpected. Raise an error always
|
||||
# here, because we found NumPy, but it appears to be corrupted somehow.
|
||||
message(FATAL_ERROR
|
||||
"Requested version and include path from NumPy, got instead:\n${_NUMPY_VALUES_OUTPUT}\n")
|
||||
return()
|
||||
endif()
|
||||
|
||||
# Make sure all directory separators are '/'
|
||||
string(REGEX REPLACE "\\\\" "/" NUMPY_INCLUDE_DIRS ${NUMPY_INCLUDE_DIRS})
|
||||
|
||||
# Get the major and minor version numbers
|
||||
string(REGEX REPLACE "\\." ";" _NUMPY_VERSION_LIST ${NUMPY_VERSION})
|
||||
list(GET _NUMPY_VERSION_LIST 0 NUMPY_VERSION_MAJOR)
|
||||
list(GET _NUMPY_VERSION_LIST 1 NUMPY_VERSION_MINOR)
|
||||
list(GET _NUMPY_VERSION_LIST 2 NUMPY_VERSION_PATCH)
|
||||
string(REGEX MATCH "[0-9]*" NUMPY_VERSION_PATCH ${NUMPY_VERSION_PATCH})
|
||||
math(EXPR NUMPY_VERSION_DECIMAL
|
||||
"(${NUMPY_VERSION_MAJOR} * 10000) + (${NUMPY_VERSION_MINOR} * 100) + ${NUMPY_VERSION_PATCH}")
|
||||
|
||||
find_package_message(NUMPY
|
||||
"Found NumPy: version \"${NUMPY_VERSION}\" ${NUMPY_INCLUDE_DIRS}"
|
||||
"${NUMPY_INCLUDE_DIRS}${NUMPY_VERSION}")
|
||||
|
||||
set(NUMPY_FOUND TRUE)
|
||||
|
||||
|
|
@ -34,19 +34,19 @@ if(NOT FIRST_PASS_DONE)
|
|||
set(CMAKE_MODULE_LINKER_FLAGS_PROFILING "${CMAKE_MODULE_LINKER_FLAGS_RELEASE}" CACHE STRING "Linker flags during profiling builds." FORCE)
|
||||
mark_as_advanced(CMAKE_C_FLAGS_PROFILING CMAKE_CXX_FLAGS_PROFILING CMAKE_EXE_LINKER_FLAGS_PROFILING CMAKE_SHARED_LINKER_FLAGS_PROFILING CMAKE_MODULE_LINKER_FLAGS_PROFILING)
|
||||
else()
|
||||
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} -fno-inline -Wall -DEIGEN_INITIALIZE_MATRICES_BY_NAN" CACHE STRING "Flags used by the compiler during debug builds." FORCE)
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-inline -Wall -DEIGEN_INITIALIZE_MATRICES_BY_NAN" CACHE STRING "Flags used by the compiler during debug builds." FORCE)
|
||||
set(CMAKE_C_FLAGS_RELWITHDEBINFO "-g -O3 -Wall -DNDEBUG" CACHE STRING "Flags used by the compiler during relwithdebinfo builds." FORCE)
|
||||
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "-g -O3 -Wall -DNDEBUG" CACHE STRING "Flags used by the compiler during relwithdebinfo builds." FORCE)
|
||||
set(CMAKE_C_FLAGS_RELEASE "-O3 -Wall -DNDEBUG -Wall" CACHE STRING "Flags used by the compiler during release builds." FORCE)
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "-O3 -Wall -DNDEBUG -Wall" CACHE STRING "Flags used by the compiler during release builds." FORCE)
|
||||
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} -std=c11 -fno-inline -Wall -DEIGEN_INITIALIZE_MATRICES_BY_NAN" CACHE STRING "Flags used by the compiler during debug builds." FORCE)
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -std=c++11 -fno-inline -Wall -DEIGEN_INITIALIZE_MATRICES_BY_NAN" CACHE STRING "Flags used by the compiler during debug builds." FORCE)
|
||||
set(CMAKE_C_FLAGS_RELWITHDEBINFO "-std=c11 -g -O3 -Wall -DNDEBUG" CACHE STRING "Flags used by the compiler during relwithdebinfo builds." FORCE)
|
||||
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "-std=c++11 -g -O3 -Wall -DNDEBUG" CACHE STRING "Flags used by the compiler during relwithdebinfo builds." FORCE)
|
||||
set(CMAKE_C_FLAGS_RELEASE "-std=c11 -O3 -Wall -DNDEBUG -Wall" CACHE STRING "Flags used by the compiler during release builds." FORCE)
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "-std=c++11 -O3 -Wall -DNDEBUG -Wall" CACHE STRING "Flags used by the compiler during release builds." FORCE)
|
||||
set(CMAKE_C_FLAGS_TIMING "${CMAKE_C_FLAGS_RELEASE} -DENABLE_TIMING" CACHE STRING "Flags used by the compiler during timing builds." FORCE)
|
||||
set(CMAKE_CXX_FLAGS_TIMING "${CMAKE_CXX_FLAGS_RELEASE} -DENABLE_TIMING" CACHE STRING "Flags used by the compiler during timing builds." FORCE)
|
||||
set(CMAKE_EXE_LINKER_FLAGS_TIMING "${CMAKE_EXE_LINKER_FLAGS_RELEASE}" CACHE STRING "Linker flags during timing builds." FORCE)
|
||||
set(CMAKE_SHARED_LINKER_FLAGS_TIMING "${CMAKE_EXE_LINKER_FLAGS_RELEASE}" CACHE STRING "Linker flags during timing builds." FORCE)
|
||||
mark_as_advanced(CMAKE_C_FLAGS_TIMING CMAKE_CXX_FLAGS_TIMING CMAKE_EXE_LINKER_FLAGS_TIMING CMAKE_SHARED_LINKER_FLAGS_TIMING)
|
||||
set(CMAKE_C_FLAGS_PROFILING "-g -O3 -Wall -DNDEBUG" CACHE STRING "Flags used by the compiler during profiling builds." FORCE)
|
||||
set(CMAKE_CXX_FLAGS_PROFILING "-g -O3 -Wall -DNDEBUG" CACHE STRING "Flags used by the compiler during profiling builds." FORCE)
|
||||
set(CMAKE_C_FLAGS_PROFILING "-std=c11 -g -O3 -Wall -DNDEBUG" CACHE STRING "Flags used by the compiler during profiling builds." FORCE)
|
||||
set(CMAKE_CXX_FLAGS_PROFILING "-std=c++11 -g -O3 -Wall -DNDEBUG" CACHE STRING "Flags used by the compiler during profiling builds." FORCE)
|
||||
set(CMAKE_EXE_LINKER_FLAGS_PROFILING "${CMAKE_EXE_LINKER_FLAGS_RELEASE}" CACHE STRING "Linker flags during profiling builds." FORCE)
|
||||
set(CMAKE_SHARED_LINKER_FLAGS_PROFILING "${CMAKE__LINKER_FLAGS_RELEASE}" CACHE STRING "Linker flags during profiling builds." FORCE)
|
||||
mark_as_advanced(CMAKE_C_FLAGS_PROFILING CMAKE_CXX_FLAGS_PROFILING CMAKE_EXE_LINKER_FLAGS_PROFILING CMAKE_SHARED_LINKER_FLAGS_PROFILING)
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
#Setup cache options
|
||||
option(GTSAM_BUILD_PYTHON "Build Python wrapper statically (increases build time)" OFF)
|
||||
set(GTSAM_PYTHON_VERSION "Default" CACHE STRING "Target python version for GTSAM python module. Use 'Default' to chose the default version")
|
||||
set(GTSAM_BUILD_PYTHON_FLAGS "" CACHE STRING "Extra flags for running Matlab PYTHON compilation")
|
||||
set(GTSAM_PYTHON_INSTALL_PATH "" CACHE PATH "Python toolbox destination, blank defaults to CMAKE_INSTALL_PREFIX/borg/python")
|
||||
if(NOT GTSAM_PYTHON_INSTALL_PATH)
|
||||
|
|
@ -8,13 +8,13 @@ endif()
|
|||
|
||||
#Author: Paul Furgale Modified by Andrew Melim
|
||||
function(wrap_python TARGET_NAME PYTHON_MODULE_DIRECTORY)
|
||||
# Boost
|
||||
find_package(Boost COMPONENTS python filesystem system REQUIRED)
|
||||
include_directories(${Boost_INCLUDE_DIRS})
|
||||
# # Boost
|
||||
# find_package(Boost COMPONENTS python filesystem system REQUIRED)
|
||||
# include_directories(${Boost_INCLUDE_DIRS})
|
||||
|
||||
# Find Python
|
||||
FIND_PACKAGE(PythonLibs 2.7 REQUIRED)
|
||||
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIRS})
|
||||
# # Find Python
|
||||
# FIND_PACKAGE(PythonLibs 2.7 REQUIRED)
|
||||
# INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIRS})
|
||||
|
||||
IF(APPLE)
|
||||
# The apple framework headers don't include the numpy headers for some reason.
|
||||
|
|
@ -36,23 +36,46 @@ function(wrap_python TARGET_NAME PYTHON_MODULE_DIRECTORY)
|
|||
ENDIF()
|
||||
ENDIF(APPLE)
|
||||
|
||||
if(MSVC)
|
||||
add_library(${moduleName}_python MODULE ${ARGN})
|
||||
set_target_properties(${moduleName}_python PROPERTIES
|
||||
OUTPUT_NAME ${moduleName}_python
|
||||
CLEAN_DIRECT_OUTPUT 1
|
||||
VERSION 1
|
||||
SOVERSION 0
|
||||
SUFFIX ".pyd")
|
||||
target_link_libraries(${moduleName}_python ${Boost_PYTHON_LIBRARY} ${PYTHON_LIBRARY} ${gtsamLib}) #temp
|
||||
|
||||
# Create a static library version
|
||||
add_library(${TARGET_NAME} SHARED ${ARGN})
|
||||
set(PYLIB_OUTPUT_FILE $<TARGET_FILE:${moduleName}_python>)
|
||||
message(${PYLIB_OUTPUT_FILE})
|
||||
get_filename_component(PYLIB_OUTPUT_NAME ${PYLIB_OUTPUT_FILE} NAME_WE)
|
||||
set(PYLIB_SO_NAME ${PYLIB_OUTPUT_NAME}.pyd)
|
||||
|
||||
target_link_libraries(${TARGET_NAME} ${Boost_PYTHON_LIBRARY} ${PYTHON_LIBRARY} gtsam-shared)
|
||||
set_target_properties(${TARGET_NAME} PROPERTIES
|
||||
OUTPUT_NAME ${TARGET_NAME}
|
||||
CLEAN_DIRECT_OUTPUT 1
|
||||
VERSION 1
|
||||
SOVERSION 0)
|
||||
ELSE()
|
||||
# Create a shared library
|
||||
add_library(${moduleName}_python SHARED ${generated_cpp_file})
|
||||
|
||||
set_target_properties(${moduleName}_python PROPERTIES
|
||||
OUTPUT_NAME ${moduleName}_python
|
||||
CLEAN_DIRECT_OUTPUT 1)
|
||||
target_link_libraries(${moduleName}_python ${Boost_PYTHON_LIBRARY} ${PYTHON_LIBRARY} ${gtsamLib}) #temp
|
||||
# On OSX and Linux, the python library must end in the extension .so. Build this
|
||||
# filename here.
|
||||
get_property(PYLIB_OUTPUT_FILE TARGET ${moduleName}_python PROPERTY LOCATION)
|
||||
set(PYLIB_OUTPUT_FILE $<TARGET_FILE:${moduleName}_python>)
|
||||
message(${PYLIB_OUTPUT_FILE})
|
||||
get_filename_component(PYLIB_OUTPUT_NAME ${PYLIB_OUTPUT_FILE} NAME_WE)
|
||||
set(PYLIB_SO_NAME lib${moduleName}_python.so)
|
||||
ENDIF(MSVC)
|
||||
|
||||
# On OSX and Linux, the python library must end in the extension .so. Build this
|
||||
# filename here.
|
||||
get_property(PYLIB_OUTPUT_FILE TARGET ${TARGET_NAME} PROPERTY LOCATION)
|
||||
get_filename_component(PYLIB_OUTPUT_NAME ${PYLIB_OUTPUT_FILE} NAME_WE)
|
||||
set(PYLIB_SO_NAME ${PYLIB_OUTPUT_NAME}.so)
|
||||
# Installs the library in the gtsam folder, which is used by setup.py to create the gtsam package
|
||||
set(PYTHON_MODULE_DIRECTORY ${CMAKE_SOURCE_DIR}/python/gtsam)
|
||||
# Cause the library to be output in the correct directory.
|
||||
add_custom_command(TARGET ${moduleName}_python
|
||||
POST_BUILD
|
||||
COMMAND cp -v ${PYLIB_OUTPUT_FILE} ${PYTHON_MODULE_DIRECTORY}/${PYLIB_SO_NAME}
|
||||
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}
|
||||
COMMENT "Copying library files to python directory" )
|
||||
|
||||
# Cause the library to be output in the correct directory.
|
||||
add_custom_command(TARGET ${TARGET_NAME}
|
||||
|
|
@ -64,4 +87,16 @@ function(wrap_python TARGET_NAME PYTHON_MODULE_DIRECTORY)
|
|||
get_directory_property(AMCF ADDITIONAL_MAKE_CLEAN_FILES)
|
||||
list(APPEND AMCF ${PYTHON_MODULE_DIRECTORY}/${PYLIB_SO_NAME})
|
||||
set_directory_properties(PROPERTIES ADDITIONAL_MAKE_CLEAN_FILES "${AMCF}")
|
||||
endfunction(wrap_python)
|
||||
endfunction(wrap_python)
|
||||
|
||||
# Macro to get list of subdirectories
|
||||
macro(SUBDIRLIST result curdir)
|
||||
file(GLOB children RELATIVE ${curdir} ${curdir}/*)
|
||||
set(dirlist "")
|
||||
foreach(child ${children})
|
||||
if(IS_DIRECTORY ${curdir}/${child})
|
||||
list(APPEND dirlist ${child})
|
||||
endif()
|
||||
endforeach()
|
||||
set(${result} ${dirlist})
|
||||
endmacro()
|
||||
|
|
|
|||
|
|
@ -195,7 +195,9 @@ macro(gtsamAddTestsGlob_impl groupName globPatterns excludedFiles linkLibraries)
|
|||
add_test(NAME ${target_name} COMMAND ${target_name})
|
||||
add_dependencies(check.${groupName} ${target_name})
|
||||
add_dependencies(check ${target_name})
|
||||
add_dependencies(all.tests ${script_name})
|
||||
if(NOT XCODE_VERSION)
|
||||
add_dependencies(all.tests ${script_name})
|
||||
endif()
|
||||
|
||||
# Add TOPSRCDIR
|
||||
set_property(SOURCE ${script_srcs} APPEND PROPERTY COMPILE_DEFINITIONS "TOPSRCDIR=\"${PROJECT_SOURCE_DIR}\"")
|
||||
|
|
|
|||
|
|
@ -1 +1,3 @@
|
|||
/html/
|
||||
*.lyx~
|
||||
*.bib~
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
|
@ -76,335 +76,10 @@ Frank Dellaert
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "macros.lyx"
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Derivatives
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\deriv}[2]{\frac{\partial#1}{\partial#2}}
|
||||
{\frac{\partial#1}{\partial#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\at}[2]{#1\biggr\rvert_{#2}}
|
||||
{#1\biggr\rvert_{#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} }
|
||||
{\at{\deriv{#1}{#2}}{#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Lie Groups
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\xhat}{\hat{x}}
|
||||
{\hat{x}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\yhat}{\hat{y}}
|
||||
{\hat{y}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Ad}[1]{Ad_{#1}}
|
||||
{Ad_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\AAdd}[1]{\mathbf{\mathop{Ad}}{}_{#1}}
|
||||
{\mathbf{\mathop{Ad}}{}_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\define}{\stackrel{\Delta}{=}}
|
||||
{\stackrel{\Delta}{=}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\gg}{\mathfrak{g}}
|
||||
{\mathfrak{g}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rn}{\mathbb{R}^{n}}
|
||||
{\mathbb{R}^{n}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SO(2), 1
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rtwo}{\mathfrak{\mathbb{R}^{2}}}
|
||||
{\mathfrak{\mathbb{R}^{2}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SOtwo}{SO(2)}
|
||||
{SO(2)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\sotwo}{\mathfrak{so(2)}}
|
||||
{\mathfrak{so(2)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\that}{\hat{\theta}}
|
||||
{\hat{\theta}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\skew}[1]{[#1]_{+}}
|
||||
{[#1]_{+}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SE(2), 3
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SEtwo}{SE(2)}
|
||||
{SE(2)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\setwo}{\mathfrak{se(2)}}
|
||||
{\mathfrak{se(2)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Skew}[1]{[#1]_{\times}}
|
||||
{[#1]_{\times}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SO(3), 3
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rthree}{\mathfrak{\mathbb{R}^{3}}}
|
||||
{\mathfrak{\mathbb{R}^{3}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SOthree}{SO(3)}
|
||||
{SO(3)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\sothree}{\mathfrak{so(3)}}
|
||||
{\mathfrak{so(3)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\what}{\hat{\omega}}
|
||||
{\hat{\omega}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SE(3),6
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rsix}{\mathfrak{\mathbb{R}^{6}}}
|
||||
{\mathfrak{\mathbb{R}^{6}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SEthree}{SE(3)}
|
||||
{SE(3)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\sethree}{\mathfrak{se(3)}}
|
||||
{\mathfrak{se(3)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\xihat}{\hat{\xi}}
|
||||
{\hat{\xi}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Aff(2),6
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Afftwo}{Aff(2)}
|
||||
{Aff(2)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\afftwo}{\mathfrak{aff(2)}}
|
||||
{\mathfrak{aff(2)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\aa}{a}
|
||||
{a}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ahat}{\hat{a}}
|
||||
{\hat{a}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SL(3),8
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SLthree}{SL(3)}
|
||||
{SL(3)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\slthree}{\mathfrak{sl(3)}}
|
||||
{\mathfrak{sl(3)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hh}{h}
|
||||
{h}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hhat}{\hat{h}}
|
||||
{\hat{h}}
|
||||
\end_inset
|
||||
|
||||
|
||||
|
|
|
|||
137
doc/macros.lyx
137
doc/macros.lyx
|
|
@ -1,42 +1,60 @@
|
|||
#LyX 1.6.5 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 345
|
||||
#LyX 2.0 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 413
|
||||
\begin_document
|
||||
\begin_header
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language english
|
||||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman default
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_osf false
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
|
||||
\graphics default
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\paperfontsize default
|
||||
\use_hyperref false
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_amsmath 1
|
||||
\use_esint 1
|
||||
\use_mhchem 1
|
||||
\use_mathdots 0
|
||||
\cite_engine basic
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\use_refstyle 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\defskip medskip
|
||||
\paragraph_indentation default
|
||||
\quotes_language english
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\author ""
|
||||
\author ""
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
|
|
@ -62,14 +80,14 @@ Derivatives
|
|||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\at}[2]{#1\biggr\rvert_{#2}}
|
||||
{#1\biggr\rvert_{#2}}
|
||||
\newcommand{\at}[1]{#1\biggr\vert_{\#2}}
|
||||
{#1\biggr\vert_{\#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} }
|
||||
{\at{\deriv{#1}{#2}}{#3}}
|
||||
{\at{\deriv{#1}{#2}}#3}
|
||||
\end_inset
|
||||
|
||||
|
||||
|
|
@ -107,6 +125,15 @@ Lie Groups
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\AAdd}[1]{\mathbf{\mathop{Ad}}{}_{#1}}
|
||||
{\mathbf{\mathop{Ad}}{}_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
@ -144,6 +171,12 @@ SO(2)
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rone}{\mathfrak{\mathbb{R}}}
|
||||
{\mathfrak{\mathbb{R}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rtwo}{\mathfrak{\mathbb{R}^{2}}}
|
||||
{\mathfrak{\mathbb{R}^{2}}}
|
||||
|
|
@ -202,6 +235,12 @@ SE(2)
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Skew}[1]{[#1]_{\times}}
|
||||
{[#1]_{\times}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
@ -243,7 +282,7 @@ SO(3)
|
|||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Skew}[1]{[#1]_{\times}}
|
||||
\renewcommand{\Skew}[1]{[#1]_{\times}}
|
||||
{[#1]_{\times}}
|
||||
\end_inset
|
||||
|
||||
|
|
@ -288,6 +327,86 @@ SE(3)
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Aff(2),6
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Afftwo}{Aff(2)}
|
||||
{Aff(2)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\afftwo}{\mathfrak{aff(2)}}
|
||||
{\mathfrak{aff(2)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\aa}{a}
|
||||
{a}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ahat}{\hat{a}}
|
||||
{\hat{a}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SL(3),8
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SLthree}{SL(3)}
|
||||
{SL(3)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\slthree}{\mathfrak{sl(3)}}
|
||||
{\mathfrak{sl(3)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hh}{h}
|
||||
{h}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hhat}{\hat{h}}
|
||||
{\hat{h}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
|
|||
396
doc/math.lyx
396
doc/math.lyx
|
|
@ -1237,21 +1237,28 @@ reference "eq:ApproximateObjective"
|
|||
\end_inset
|
||||
|
||||
.
|
||||
In particular, the notion of an exponential map allows us to define an
|
||||
incremental transformation as tracing out a geodesic curve on the group
|
||||
manifold along a certain
|
||||
In particular, the notion of an exponential map allows us to define a mapping
|
||||
from
|
||||
\series bold
|
||||
tangent vector
|
||||
local coordinates
|
||||
\series default
|
||||
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
back to a neighborhood in
|
||||
\begin_inset Formula $G$
|
||||
\end_inset
|
||||
|
||||
around
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
a\oplus\xi\define a\exp\left(\hat{\xi}\right)
|
||||
\]
|
||||
\begin{equation}
|
||||
a\oplus\xi\define a\exp\left(\hat{\xi}\right)\label{eq:expmap}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
|
@ -1263,11 +1270,12 @@ with
|
|||
\begin_inset Formula $n$
|
||||
\end_inset
|
||||
|
||||
-dimensional Lie group,
|
||||
-dimensional Lie group.
|
||||
Above,
|
||||
\begin_inset Formula $\hat{\xi}\in\mathfrak{g}$
|
||||
\end_inset
|
||||
|
||||
the Lie algebra element corresponding to the vector
|
||||
is the Lie algebra element corresponding to the vector
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
|
|
@ -1305,7 +1313,7 @@ For the Lie group
|
|||
\end_inset
|
||||
|
||||
is denoted as
|
||||
\begin_inset Formula $\omega$
|
||||
\begin_inset Formula $\omega t$
|
||||
\end_inset
|
||||
|
||||
and represents an angular displacement.
|
||||
|
|
@ -1314,17 +1322,17 @@ For the Lie group
|
|||
\end_inset
|
||||
|
||||
is a skew symmetric matrix denoted as
|
||||
\begin_inset Formula $\Skew{\omega}\in\sothree$
|
||||
\begin_inset Formula $\Skew{\omega t}\in\sothree$
|
||||
\end_inset
|
||||
|
||||
, and is given by
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\Skew{\omega}=\left[\begin{array}{ccc}
|
||||
\Skew{\omega t}=\left[\begin{array}{ccc}
|
||||
0 & -\omega_{z} & \omega_{y}\\
|
||||
\omega_{z} & 0 & -\omega_{x}\\
|
||||
-\omega_{y} & \omega_{x} & 0
|
||||
\end{array}\right]
|
||||
\end{array}\right]t
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
|
@ -1334,12 +1342,136 @@ Finally, the increment
|
|||
\end_inset
|
||||
|
||||
corresponds to an incremental rotation
|
||||
\begin_inset Formula $R\oplus\omega=Re^{\Skew{\omega}}$
|
||||
\begin_inset Formula $R\oplus\omega t=Re^{\Skew{\omega t}}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Local Coordinates vs.
|
||||
Tangent Vectors
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In differential geometry,
|
||||
\series bold
|
||||
tangent vectors
|
||||
\series default
|
||||
|
||||
\begin_inset Formula $v\in T_{a}G$
|
||||
\end_inset
|
||||
|
||||
at
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
are elements of the Lie algebra
|
||||
\begin_inset Formula $\mathfrak{g}$
|
||||
\end_inset
|
||||
|
||||
, and are defined as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
v\define\Jac{\gamma(t)}t{t=0}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\gamma$
|
||||
\end_inset
|
||||
|
||||
is some curve that passes through
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
at
|
||||
\begin_inset Formula $t=0$
|
||||
\end_inset
|
||||
|
||||
, i.e.
|
||||
|
||||
\begin_inset Formula $\gamma(0)=a$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In particular, for any fixed local coordinate
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
the map
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:expmap"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be used to define a
|
||||
\series bold
|
||||
geodesic curve
|
||||
\series default
|
||||
on the group manifold defined by
|
||||
\begin_inset Formula $\gamma:t\mapsto ae^{\widehat{t\xi}}$
|
||||
\end_inset
|
||||
|
||||
, and the corresponding tangent vector is given by
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\Jac{ae^{\widehat{t\xi}}}t{t=0}=a\xihat\label{eq:tangent-vector}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
This defines the mapping between local coordinates
|
||||
\begin_inset Formula $\xi\in\Rn$
|
||||
\end_inset
|
||||
|
||||
and actual tangent vectors
|
||||
\begin_inset Formula $a\xihat\in g$
|
||||
\end_inset
|
||||
|
||||
: the vector
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
defines a direction of travel on the manifold, but does so in the local
|
||||
coordinate frame
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Example
|
||||
Assume a rigid body's attitude is described by
|
||||
\begin_inset Formula $R_{b}^{n}(t)$
|
||||
\end_inset
|
||||
|
||||
, where the indices denote the navigation frame
|
||||
\begin_inset Formula $N$
|
||||
\end_inset
|
||||
|
||||
and body frame
|
||||
\begin_inset Formula $B$
|
||||
\end_inset
|
||||
|
||||
, respectively.
|
||||
An extrinsically calibrated gyroscope measures the angular velocity
|
||||
\begin_inset Formula $\omega^{b}$
|
||||
\end_inset
|
||||
|
||||
, in the body frame, and the corresponding tangent vector is
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\dot{R}_{b}^{n}(t)=R_{b}^{n}(t)\widehat{\omega^{b}}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Derivatives
|
||||
\end_layout
|
||||
|
|
@ -1352,7 +1484,7 @@ reference "def:differentiable"
|
|||
|
||||
\end_inset
|
||||
|
||||
to map exponential coordinates
|
||||
to map local coordinates
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
|
|
@ -1368,7 +1500,7 @@ reference "def:differentiable"
|
|||
\begin_inset Formula $Df_{a}$
|
||||
\end_inset
|
||||
|
||||
locally approximates a function
|
||||
approximates the function
|
||||
\begin_inset Formula $f$
|
||||
\end_inset
|
||||
|
||||
|
|
@ -1378,6 +1510,10 @@ reference "def:differentiable"
|
|||
|
||||
to
|
||||
\begin_inset Formula $\Reals m$
|
||||
\end_inset
|
||||
|
||||
in a neighborhood around
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
:
|
||||
|
|
@ -1455,41 +1591,6 @@ derivative
|
|||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Note that the vectors
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
can be viewed as lying in the tangent space to
|
||||
\begin_inset Formula $G$
|
||||
\end_inset
|
||||
|
||||
at
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
, but defining this rigorously would take us on a longer tour of differential
|
||||
geometry.
|
||||
Informally,
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
is simply the direction, in a local coordinate frame, that is locally tangent
|
||||
at
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
to a geodesic curve
|
||||
\begin_inset Formula $\gamma:t\mapsto ae^{\widehat{t\xi}}$
|
||||
\end_inset
|
||||
|
||||
traced out by the exponential map, with
|
||||
\begin_inset Formula $\gamma(0)=a$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Derivative of an Action
|
||||
\begin_inset CommandInset label
|
||||
|
|
@ -3000,7 +3101,7 @@ f(ge^{\xhat})=f(ge^{\xhat}g^{-1}g)=f(e^{\Ad g\xhat}g)
|
|||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Derivative of the Exponential and Logarithm Map
|
||||
Derivative of the Exponential Map
|
||||
\end_layout
|
||||
|
||||
\begin_layout Theorem
|
||||
|
|
@ -3064,17 +3165,196 @@ For
|
|||
\begin_inset Formula $\xi\neq0$
|
||||
\end_inset
|
||||
|
||||
, things are not simple, see .
|
||||
, things are not simple.
|
||||
As with pushforwards above, we will be looking for an
|
||||
\begin_inset Formula $n\times n$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Flex URL
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
Jacobian
|
||||
\begin_inset Formula $f'(\xi)$
|
||||
\end_inset
|
||||
|
||||
such that
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\bar default
|
||||
\strikeout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
f\left(\xi+\delta\right)\approx f\left(\xi\right)\exp\left(\widehat{f'(\xi)\delta}\right)\label{eq:push_exp}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
Differential geometry tells us that for any Lie algebra element
|
||||
\begin_inset Formula $\xihat\in\mathfrak{g}$
|
||||
\end_inset
|
||||
|
||||
there exists a
|
||||
\emph on
|
||||
linear
|
||||
\emph default
|
||||
map
|
||||
\begin_inset Formula $d\exp_{\xihat}:T_{\xihat}\mathfrak{g}\rightarrow T_{\exp(\xihat)}G$
|
||||
\end_inset
|
||||
|
||||
, which is given by
|
||||
\begin_inset Foot
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
See
|
||||
\begin_inset Flex URL
|
||||
status open
|
||||
|
||||
http://deltaepsilons.wordpress.com/2009/11/06/helgasons-formula-for-the-differenti
|
||||
al-of-the-exponential/
|
||||
\begin_layout Plain Layout
|
||||
|
||||
http://deltaepsilons.wordpress.com/2009/11/06/
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
or
|
||||
\begin_inset Flex URL
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
https://en.wikipedia.org/wiki/Derivative_of_the_exponential_map
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
d\exp_{\xihat}\hat{x}=\exp(\xihat)\frac{1-\exp(-ad_{\xihat})}{ad_{\xihat}}\hat{x}\label{eq:dexp}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
with
|
||||
\begin_inset Formula $\hat{x}\in T_{\xihat}\mathfrak{g}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $ad_{\xihat}$
|
||||
\end_inset
|
||||
|
||||
itself a linear map taking
|
||||
\begin_inset Formula $\hat{x}$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $[\xihat,\hat{x}]$
|
||||
\end_inset
|
||||
|
||||
, the Lie bracket.
|
||||
The actual formula above is not really as important as the fact that the
|
||||
linear map exists, although it is expressed directly in terms of tangent
|
||||
vectors to
|
||||
\begin_inset Formula $\mathfrak{g}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $G$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:dexp"
|
||||
|
||||
\end_inset
|
||||
|
||||
is a tangent vector, and comparing with
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:tangent-vector"
|
||||
|
||||
\end_inset
|
||||
|
||||
we see that it maps to local coordinates
|
||||
\begin_inset Formula $y$
|
||||
\end_inset
|
||||
|
||||
as follows:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\yhat=\frac{1-\exp(-ad_{\xihat})}{ad_{\xihat}}\hat{x}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
which can be used to construct the Jacobian
|
||||
\begin_inset Formula $f'(\xi)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Example
|
||||
For
|
||||
\begin_inset Formula $\SOthree$
|
||||
\end_inset
|
||||
|
||||
, the operator
|
||||
\begin_inset Formula $ad_{\xihat}$
|
||||
\end_inset
|
||||
|
||||
is simply a matrix multiplication when representing
|
||||
\begin_inset Formula $\sothree$
|
||||
\end_inset
|
||||
|
||||
using 3-vectors, i.e.,
|
||||
\begin_inset Formula $ad_{\xihat}x=\xihat x$
|
||||
\end_inset
|
||||
|
||||
, and the
|
||||
\begin_inset Formula $3\times3$
|
||||
\end_inset
|
||||
|
||||
Jacobian corresponding to
|
||||
\begin_inset Formula $d\exp$
|
||||
\end_inset
|
||||
|
||||
is
|
||||
\begin_inset Formula
|
||||
\[
|
||||
f'(\xi)=\frac{I_{3\times3}-\exp(-\xihat)}{\xihat}=\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(k+1)!}\xihat^{k}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
which, similar to the exponential map, has a simple closed form expression
|
||||
for
|
||||
\begin_inset Formula $\SOthree$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
|
@ -3097,7 +3377,7 @@ Retractions
|
|||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\retract}{\mathcal{R}}
|
||||
\renewcommand{\retract}{\mathcal{R}}
|
||||
{\mathcal{R}}
|
||||
\end_inset
|
||||
|
||||
|
|
@ -6797,7 +7077,7 @@ Then
|
|||
\begin_layout Standard
|
||||
\begin_inset CommandInset bibtex
|
||||
LatexCommand bibtex
|
||||
bibfiles "/Users/dellaert/papers/refs"
|
||||
bibfiles "refs"
|
||||
options "plain"
|
||||
|
||||
\end_inset
|
||||
|
|
|
|||
|
|
@ -0,0 +1,26 @@
|
|||
@article{Iserles00an,
|
||||
title = {Lie-group methods},
|
||||
author = {Iserles, Arieh and Munthe-Kaas, Hans Z and
|
||||
N{\o}rsett, Syvert P and Zanna, Antonella},
|
||||
journal = {Acta Numerica 2000},
|
||||
volume = {9},
|
||||
pages = {215--365},
|
||||
year = {2000},
|
||||
publisher = {Cambridge Univ Press}
|
||||
}
|
||||
|
||||
@book{Murray94book,
|
||||
title = {A mathematical introduction to robotic manipulation},
|
||||
author = {Murray, Richard M and Li, Zexiang and Sastry, S
|
||||
Shankar and Sastry, S Shankara},
|
||||
year = {1994},
|
||||
publisher = {CRC press}
|
||||
}
|
||||
|
||||
@book{Spivak65book,
|
||||
title = {Calculus on manifolds},
|
||||
author = {Spivak, Michael},
|
||||
volume = {1},
|
||||
year = {1965},
|
||||
publisher = {WA Benjamin New York}
|
||||
}
|
||||
|
|
@ -35,7 +35,7 @@ void createExampleBALFile(const string& filename, const vector<Point3>& P,
|
|||
SfM_data data;
|
||||
|
||||
// Create two cameras
|
||||
Rot3 aRb = Rot3::yaw(M_PI_2);
|
||||
Rot3 aRb = Rot3::Yaw(M_PI_2);
|
||||
Point3 aTb(0.1, 0, 0);
|
||||
Pose3 identity, aPb(aRb, aTb);
|
||||
data.cameras.push_back(SfM_Camera(pose1, K));
|
||||
|
|
@ -66,7 +66,7 @@ void createExampleBALFile(const string& filename, const vector<Point3>& P,
|
|||
void create5PointExample1() {
|
||||
|
||||
// Create two cameras poses
|
||||
Rot3 aRb = Rot3::yaw(M_PI_2);
|
||||
Rot3 aRb = Rot3::Yaw(M_PI_2);
|
||||
Point3 aTb(0.1, 0, 0);
|
||||
Pose3 pose1, pose2(aRb, aTb);
|
||||
|
||||
|
|
@ -85,7 +85,7 @@ void create5PointExample1() {
|
|||
void create5PointExample2() {
|
||||
|
||||
// Create two cameras poses
|
||||
Rot3 aRb = Rot3::yaw(M_PI_2);
|
||||
Rot3 aRb = Rot3::Yaw(M_PI_2);
|
||||
Point3 aTb(10, 0, 0);
|
||||
Pose3 pose1, pose2(aRb, aTb);
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1 @@
|
|||
*.txt
|
||||
|
|
@ -42,7 +42,7 @@
|
|||
// Also, we will initialize the robot at the origin using a Prior factor.
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/BearingRangeFactor.h>
|
||||
#include <gtsam/sam/BearingRangeFactor.h>
|
||||
|
||||
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
|
||||
// are nonlinear factors, we will need a Nonlinear Factor Graph.
|
||||
|
|
|
|||
|
|
@ -39,7 +39,7 @@
|
|||
// have been provided with the library for solving robotics SLAM problems.
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/RangeFactor.h>
|
||||
#include <gtsam/sam/RangeFactor.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
|
||||
// Standard headers, added last, so we know headers above work on their own
|
||||
|
|
|
|||
|
|
@ -97,7 +97,7 @@ int main(int argc, char* argv[]) {
|
|||
// Intentionally initialize the variables off from the ground truth
|
||||
Values initialEstimate;
|
||||
for (size_t i = 0; i < poses.size(); ++i)
|
||||
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
|
||||
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
|
||||
for (size_t j = 0; j < points.size(); ++j)
|
||||
initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
|
||||
initialEstimate.print("Initial Estimates:\n");
|
||||
|
|
|
|||
|
|
@ -84,7 +84,7 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
// Create perturbed initial
|
||||
Values initial;
|
||||
Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
for (size_t i = 0; i < poses.size(); ++i)
|
||||
initial.insert(Symbol('x', i), poses[i].compose(delta));
|
||||
for (size_t j = 0; j < points.size(); ++j)
|
||||
|
|
|
|||
|
|
@ -34,6 +34,9 @@ using namespace gtsam;
|
|||
// Make the typename short so it looks much cleaner
|
||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
||||
|
||||
// create a typedef to the camera type
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
|
||||
|
|
@ -55,12 +58,12 @@ int main(int argc, char* argv[]) {
|
|||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
|
||||
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
|
||||
SmartFactor::shared_ptr smartfactor(new SmartFactor());
|
||||
SmartFactor::shared_ptr smartfactor(new SmartFactor(measurementNoise, K));
|
||||
|
||||
for (size_t i = 0; i < poses.size(); ++i) {
|
||||
|
||||
// generate the 2D measurement
|
||||
SimpleCamera camera(poses[i], *K);
|
||||
Camera camera(poses[i], K);
|
||||
Point2 measurement = camera.project(points[j]);
|
||||
|
||||
// call add() function to add measurement into a single factor, here we need to add:
|
||||
|
|
@ -68,7 +71,7 @@ int main(int argc, char* argv[]) {
|
|||
// 2. the corresponding camera's key
|
||||
// 3. camera noise model
|
||||
// 4. camera calibration
|
||||
smartfactor->add(measurement, i, measurementNoise, K);
|
||||
smartfactor->add(measurement, i);
|
||||
}
|
||||
|
||||
// insert the smart factor in the graph
|
||||
|
|
@ -77,24 +80,24 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
// Add a prior on pose x0. This indirectly specifies where the origin is.
|
||||
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(
|
||||
noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
|
||||
graph.push_back(PriorFactor<Pose3>(0, poses[0], poseNoise));
|
||||
graph.push_back(PriorFactor<Camera>(0, Camera(poses[0],K), noise));
|
||||
|
||||
// Because the structure-from-motion problem has a scale ambiguity, the problem is
|
||||
// still under-constrained. Here we add a prior on the second pose x1, so this will
|
||||
// fix the scale by indicating the distance between x0 and x1.
|
||||
// Because these two are fixed, the rest of the poses will be also be fixed.
|
||||
graph.push_back(PriorFactor<Pose3>(1, poses[1], poseNoise)); // add directly to graph
|
||||
graph.push_back(PriorFactor<Camera>(1, Camera(poses[1],K), noise)); // add directly to graph
|
||||
|
||||
graph.print("Factor Graph:\n");
|
||||
|
||||
// Create the initial estimate to the solution
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
Values initialEstimate;
|
||||
Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
for (size_t i = 0; i < poses.size(); ++i)
|
||||
initialEstimate.insert(i, poses[i].compose(delta));
|
||||
initialEstimate.insert(i, Camera(poses[i].compose(delta), K));
|
||||
initialEstimate.print("Initial Estimates:\n");
|
||||
|
||||
// Optimize the graph and print results
|
||||
|
|
|
|||
|
|
@ -30,6 +30,9 @@ using namespace gtsam;
|
|||
// Make the typename short so it looks much cleaner
|
||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
||||
|
||||
// create a typedef to the camera type
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
|
||||
|
|
@ -51,16 +54,16 @@ int main(int argc, char* argv[]) {
|
|||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
|
||||
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
|
||||
SmartFactor::shared_ptr smartfactor(new SmartFactor());
|
||||
SmartFactor::shared_ptr smartfactor(new SmartFactor(measurementNoise, K));
|
||||
|
||||
for (size_t i = 0; i < poses.size(); ++i) {
|
||||
|
||||
// generate the 2D measurement
|
||||
SimpleCamera camera(poses[i], *K);
|
||||
Camera camera(poses[i], K);
|
||||
Point2 measurement = camera.project(points[j]);
|
||||
|
||||
// call add() function to add measurement into a single factor, here we need to add:
|
||||
smartfactor->add(measurement, i, measurementNoise, K);
|
||||
smartfactor->add(measurement, i);
|
||||
}
|
||||
|
||||
// insert the smart factor in the graph
|
||||
|
|
@ -69,18 +72,18 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
// Add a prior on pose x0. This indirectly specifies where the origin is.
|
||||
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(
|
||||
noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
|
||||
graph.push_back(PriorFactor<Pose3>(0, poses[0], poseNoise));
|
||||
graph.push_back(PriorFactor<Camera>(0, Camera(poses[0],K), noise));
|
||||
|
||||
// Fix the scale ambiguity by adding a prior
|
||||
graph.push_back(PriorFactor<Pose3>(1, poses[1], poseNoise));
|
||||
graph.push_back(PriorFactor<Camera>(1, Camera(poses[0],K), noise));
|
||||
|
||||
// Create the initial estimate to the solution
|
||||
Values initialEstimate;
|
||||
Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
for (size_t i = 0; i < poses.size(); ++i)
|
||||
initialEstimate.insert(i, poses[i].compose(delta));
|
||||
initialEstimate.insert(i, Camera(poses[i].compose(delta),K));
|
||||
|
||||
// We will use LM in the outer optimization loop, but by specifying "Iterative" below
|
||||
// We indicate that an iterative linear solver should be used.
|
||||
|
|
|
|||
|
|
@ -0,0 +1,144 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SFMExample.cpp
|
||||
* @brief This file is to compare the ordering performance for COLAMD vs METIS.
|
||||
* Example problem is to solve a structure-from-motion problem from a "Bundle Adjustment in the Large" file.
|
||||
* @author Frank Dellaert, Zhaoyang Lv
|
||||
*/
|
||||
|
||||
// For an explanation of headers, see SFMExample.cpp
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/inference/Ordering.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/GeneralSFMFactor.h>
|
||||
#include <gtsam/slam/dataset.h> // for loading BAL datasets !
|
||||
|
||||
#include <gtsam/base/timing.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using symbol_shorthand::C;
|
||||
using symbol_shorthand::P;
|
||||
|
||||
// We will be using a projection factor that ties a SFM_Camera to a 3D point.
|
||||
// An SFM_Camera is defined in datase.h as a camera with unknown Cal3Bundler calibration
|
||||
// and has a total of 9 free parameters
|
||||
typedef GeneralSFMFactor<SfM_Camera,Point3> MyFactor;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main (int argc, char* argv[]) {
|
||||
|
||||
// Find default file, but if an argument is given, try loading a file
|
||||
string filename = findExampleDataFile("dubrovnik-3-7-pre");
|
||||
if (argc>1) filename = string(argv[1]);
|
||||
|
||||
// Load the SfM data from file
|
||||
SfM_data mydata;
|
||||
readBAL(filename, mydata);
|
||||
cout << boost::format("read %1% tracks on %2% cameras\n") % mydata.number_tracks() % mydata.number_cameras();
|
||||
|
||||
// Create a factor graph
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
// We share *one* noiseModel between all projection factors
|
||||
noiseModel::Isotropic::shared_ptr noise =
|
||||
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
|
||||
// Add measurements to the factor graph
|
||||
size_t j = 0;
|
||||
BOOST_FOREACH(const SfM_Track& track, mydata.tracks) {
|
||||
BOOST_FOREACH(const SfM_Measurement& m, track.measurements) {
|
||||
size_t i = m.first;
|
||||
Point2 uv = m.second;
|
||||
graph.push_back(MyFactor(uv, noise, C(i), P(j))); // note use of shorthand symbols C and P
|
||||
}
|
||||
j += 1;
|
||||
}
|
||||
|
||||
// Add a prior on pose x1. This indirectly specifies where the origin is.
|
||||
// and a prior on the position of the first landmark to fix the scale
|
||||
graph.push_back(PriorFactor<SfM_Camera>(C(0), mydata.cameras[0], noiseModel::Isotropic::Sigma(9, 0.1)));
|
||||
graph.push_back(PriorFactor<Point3> (P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1)));
|
||||
|
||||
// Create initial estimate
|
||||
Values initial;
|
||||
size_t i = 0; j = 0;
|
||||
BOOST_FOREACH(const SfM_Camera& camera, mydata.cameras) initial.insert(C(i++), camera);
|
||||
BOOST_FOREACH(const SfM_Track& track, mydata.tracks) initial.insert(P(j++), track.p);
|
||||
|
||||
/** --------------- COMPARISON -----------------------**/
|
||||
/** ----------------------------------------------------**/
|
||||
|
||||
LevenbergMarquardtParams params_using_COLAMD, params_using_METIS;
|
||||
try {
|
||||
params_using_METIS.setVerbosity("ERROR");
|
||||
gttic_(METIS_ORDERING);
|
||||
params_using_METIS.ordering = Ordering::Create(Ordering::METIS, graph);
|
||||
gttoc_(METIS_ORDERING);
|
||||
|
||||
params_using_COLAMD.setVerbosity("ERROR");
|
||||
gttic_(COLAMD_ORDERING);
|
||||
params_using_COLAMD.ordering = Ordering::Create(Ordering::COLAMD, graph);
|
||||
gttoc_(COLAMD_ORDERING);
|
||||
} catch (exception& e) {
|
||||
cout << e.what();
|
||||
}
|
||||
|
||||
// expect they have different ordering results
|
||||
if(params_using_COLAMD.ordering == params_using_METIS.ordering) {
|
||||
cout << "COLAMD and METIS produce the same ordering. "
|
||||
<< "Problem here!!!" << endl;
|
||||
}
|
||||
|
||||
/* Optimize the graph with METIS and COLAMD and time the results */
|
||||
|
||||
Values result_METIS, result_COLAMD;
|
||||
try {
|
||||
gttic_(OPTIMIZE_WITH_METIS);
|
||||
LevenbergMarquardtOptimizer lm_METIS(graph, initial, params_using_METIS);
|
||||
result_METIS = lm_METIS.optimize();
|
||||
gttoc_(OPTIMIZE_WITH_METIS);
|
||||
|
||||
gttic_(OPTIMIZE_WITH_COLAMD);
|
||||
LevenbergMarquardtOptimizer lm_COLAMD(graph, initial, params_using_COLAMD);
|
||||
result_COLAMD = lm_COLAMD.optimize();
|
||||
gttoc_(OPTIMIZE_WITH_COLAMD);
|
||||
} catch (exception& e) {
|
||||
cout << e.what();
|
||||
}
|
||||
|
||||
|
||||
{ // printing the result
|
||||
|
||||
cout << "COLAMD final error: " << graph.error(result_COLAMD) << endl;
|
||||
cout << "METIS final error: " << graph.error(result_METIS) << endl;
|
||||
|
||||
cout << endl << endl;
|
||||
|
||||
cout << "Time comparison by solving " << filename << " results:" << endl;
|
||||
cout << boost::format("%1% point tracks and %2% cameras\n") \
|
||||
% mydata.number_tracks() % mydata.number_cameras() \
|
||||
<< endl;
|
||||
|
||||
tictoc_print_();
|
||||
}
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
|
@ -82,7 +82,7 @@ int main(int argc, char* argv[]) {
|
|||
Values initialEstimate;
|
||||
initialEstimate.insert(Symbol('K', 0), Cal3_S2(60.0, 60.0, 0.0, 45.0, 45.0));
|
||||
for (size_t i = 0; i < poses.size(); ++i)
|
||||
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
|
||||
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
|
||||
for (size_t j = 0; j < points.size(); ++j)
|
||||
initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
|
||||
|
||||
|
|
|
|||
|
|
@ -32,7 +32,7 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/BearingRangeFactor.h>
|
||||
#include <gtsam/sam/BearingRangeFactor.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
|
|
@ -44,6 +44,7 @@
|
|||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/base/timing.h>
|
||||
#include <gtsam/base/treeTraversal-inst.h>
|
||||
#include <gtsam/config.h> // for GTSAM_USE_TBB
|
||||
|
||||
#include <boost/archive/binary_iarchive.hpp>
|
||||
#include <boost/archive/binary_oarchive.hpp>
|
||||
|
|
@ -575,7 +576,7 @@ void runStats()
|
|||
{
|
||||
cout << "Gathering statistics..." << endl;
|
||||
GaussianFactorGraph linear = *datasetMeasurements.linearize(initial);
|
||||
GaussianJunctionTree jt(GaussianEliminationTree(linear, Ordering::colamd(linear)));
|
||||
GaussianJunctionTree jt(GaussianEliminationTree(linear, Ordering::Colamd(linear)));
|
||||
treeTraversal::ForestStatistics statistics = treeTraversal::GatherStatistics(jt);
|
||||
|
||||
ofstream file;
|
||||
|
|
|
|||
|
|
@ -17,6 +17,7 @@
|
|||
|
||||
#include <gtsam/global_includes.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
|
||||
#include <boost/assign/list_of.hpp>
|
||||
#include <boost/foreach.hpp>
|
||||
#include <map>
|
||||
|
|
|
|||
|
|
@ -95,7 +95,7 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
// Add an initial guess for the current pose
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
|
||||
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
|
||||
|
||||
// If this is the first iteration, add a prior on the first pose to set the coordinate frame
|
||||
// and a prior on the first landmark to set the scale
|
||||
|
|
|
|||
|
|
@ -95,7 +95,7 @@ int main(int argc, char* argv[]) {
|
|||
}
|
||||
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
Pose3 noise(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
Pose3 noise(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
Pose3 initial_xi = poses[i].compose(noise);
|
||||
|
||||
// Add an initial guess for the current pose
|
||||
|
|
|
|||
278
gtsam.h
278
gtsam.h
|
|
@ -1,4 +1,5 @@
|
|||
/**
|
||||
|
||||
* GTSAM Wrap Module Definition
|
||||
*
|
||||
* These are the current classes available through the matlab toolbox interface,
|
||||
|
|
@ -156,7 +157,7 @@ virtual class Value {
|
|||
size_t dim() const;
|
||||
};
|
||||
|
||||
#include <gtsam/base/LieScalar_Deprecated.h>
|
||||
#include <gtsam/base/deprecated/LieScalar.h>
|
||||
class LieScalar {
|
||||
// Standard constructors
|
||||
LieScalar();
|
||||
|
|
@ -185,7 +186,7 @@ class LieScalar {
|
|||
static Vector Logmap(const gtsam::LieScalar& p);
|
||||
};
|
||||
|
||||
#include <gtsam/base/LieVector_Deprecated.h>
|
||||
#include <gtsam/base/deprecated/LieVector.h>
|
||||
class LieVector {
|
||||
// Standard constructors
|
||||
LieVector();
|
||||
|
|
@ -217,7 +218,7 @@ class LieVector {
|
|||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/base/LieMatrix_Deprecated.h>
|
||||
#include <gtsam/base/deprecated/LieMatrix.h>
|
||||
class LieMatrix {
|
||||
// Standard constructors
|
||||
LieMatrix();
|
||||
|
|
@ -433,12 +434,12 @@ class Rot3 {
|
|||
static gtsam::Rot3 Rz(double t);
|
||||
static gtsam::Rot3 RzRyRx(double x, double y, double z);
|
||||
static gtsam::Rot3 RzRyRx(Vector xyz);
|
||||
static gtsam::Rot3 yaw(double t); // positive yaw is to right (as in aircraft heading)
|
||||
static gtsam::Rot3 pitch(double t); // positive pitch is up (increasing aircraft altitude)
|
||||
static gtsam::Rot3 roll(double t); // positive roll is to right (increasing yaw in aircraft)
|
||||
static gtsam::Rot3 ypr(double y, double p, double r);
|
||||
static gtsam::Rot3 quaternion(double w, double x, double y, double z);
|
||||
static gtsam::Rot3 rodriguez(Vector v);
|
||||
static gtsam::Rot3 Yaw(double t); // positive yaw is to right (as in aircraft heading)
|
||||
static gtsam::Rot3 Pitch(double t); // positive pitch is up (increasing aircraft altitude)
|
||||
static gtsam::Rot3 Roll(double t); // positive roll is to right (increasing yaw in aircraft)
|
||||
static gtsam::Rot3 Ypr(double y, double p, double r);
|
||||
static gtsam::Rot3 Quaternion(double w, double x, double y, double z);
|
||||
static gtsam::Rot3 Rodrigues(Vector v);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
|
|
@ -812,7 +813,7 @@ class CalibratedCamera {
|
|||
|
||||
// Action on Point3
|
||||
gtsam::Point2 project(const gtsam::Point3& point) const;
|
||||
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
|
||||
static gtsam::Point2 Project(const gtsam::Point3& cameraPoint);
|
||||
|
||||
// Standard Interface
|
||||
gtsam::Pose3 pose() const;
|
||||
|
|
@ -848,7 +849,7 @@ class PinholeCamera {
|
|||
static size_t Dim();
|
||||
|
||||
// Transformations and measurement functions
|
||||
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
|
||||
static gtsam::Point2 Project(const gtsam::Point3& cameraPoint);
|
||||
pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const;
|
||||
gtsam::Point2 project(const gtsam::Point3& point);
|
||||
gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const;
|
||||
|
|
@ -884,7 +885,7 @@ virtual class SimpleCamera {
|
|||
static size_t Dim();
|
||||
|
||||
// Transformations and measurement functions
|
||||
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
|
||||
static gtsam::Point2 Project(const gtsam::Point3& cameraPoint);
|
||||
pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const;
|
||||
gtsam::Point2 project(const gtsam::Point3& point);
|
||||
gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const;
|
||||
|
|
@ -915,7 +916,7 @@ class StereoCamera {
|
|||
// Standard Interface
|
||||
gtsam::Pose3 pose() const;
|
||||
double baseline() const;
|
||||
gtsam::Cal3_S2Stereo* calibration() const;
|
||||
gtsam::Cal3_S2Stereo calibration() const;
|
||||
|
||||
// Manifold
|
||||
gtsam::StereoCamera retract(const Vector& d) const;
|
||||
|
|
@ -1654,12 +1655,12 @@ char symbolChr(size_t key);
|
|||
size_t symbolIndex(size_t key);
|
||||
|
||||
// Default keyformatter
|
||||
void printKeyList (const gtsam::KeyList& keys);
|
||||
void printKeyList (const gtsam::KeyList& keys, string s);
|
||||
void printKeyVector(const gtsam::KeyVector& keys);
|
||||
void printKeyVector(const gtsam::KeyVector& keys, string s);
|
||||
void printKeySet (const gtsam::KeySet& keys);
|
||||
void printKeySet (const gtsam::KeySet& keys, string s);
|
||||
void PrintKeyList (const gtsam::KeyList& keys);
|
||||
void PrintKeyList (const gtsam::KeyList& keys, string s);
|
||||
void PrintKeyVector(const gtsam::KeyVector& keys);
|
||||
void PrintKeyVector(const gtsam::KeyVector& keys, string s);
|
||||
void PrintKeySet (const gtsam::KeySet& keys);
|
||||
void PrintKeySet (const gtsam::KeySet& keys, string s);
|
||||
|
||||
#include <gtsam/inference/LabeledSymbol.h>
|
||||
class LabeledSymbol {
|
||||
|
|
@ -1776,7 +1777,7 @@ class Values {
|
|||
void swap(gtsam::Values& values);
|
||||
|
||||
bool exists(size_t j) const;
|
||||
gtsam::KeyList keys() const;
|
||||
gtsam::KeyVector keys() const;
|
||||
|
||||
gtsam::VectorValues zeroVectors() const;
|
||||
|
||||
|
|
@ -1893,8 +1894,6 @@ class KeySet {
|
|||
class KeyVector {
|
||||
KeyVector();
|
||||
KeyVector(const gtsam::KeyVector& other);
|
||||
KeyVector(const gtsam::KeySet& other);
|
||||
KeyVector(const gtsam::KeyList& other);
|
||||
|
||||
// Note: no print function
|
||||
|
||||
|
|
@ -2264,7 +2263,7 @@ virtual class NonlinearEquality : gtsam::NoiseModelFactor {
|
|||
};
|
||||
|
||||
|
||||
#include <gtsam/slam/RangeFactor.h>
|
||||
#include <gtsam/sam/RangeFactor.h>
|
||||
template<POSE, POINT>
|
||||
virtual class RangeFactor : gtsam::NoiseModelFactor {
|
||||
RangeFactor(size_t key1, size_t key2, double measured, const gtsam::noiseModel::Base* noiseModel);
|
||||
|
|
@ -2274,20 +2273,16 @@ typedef gtsam::RangeFactor<gtsam::Pose2, gtsam::Point2> RangeFactorPosePoint2;
|
|||
typedef gtsam::RangeFactor<gtsam::Pose3, gtsam::Point3> RangeFactorPosePoint3;
|
||||
typedef gtsam::RangeFactor<gtsam::Pose2, gtsam::Pose2> RangeFactorPose2;
|
||||
typedef gtsam::RangeFactor<gtsam::Pose3, gtsam::Pose3> RangeFactorPose3;
|
||||
|
||||
// Commented out by Frank Dec 2014: not poses!
|
||||
// If needed, we need a RangeFactor that takes a camera, extracts the pose
|
||||
// Should be easy with Expressions
|
||||
//typedef gtsam::RangeFactor<gtsam::CalibratedCamera, gtsam::Point3> RangeFactorCalibratedCameraPoint;
|
||||
//typedef gtsam::RangeFactor<gtsam::SimpleCamera, gtsam::Point3> RangeFactorSimpleCameraPoint;
|
||||
//typedef gtsam::RangeFactor<gtsam::CalibratedCamera, gtsam::CalibratedCamera> RangeFactorCalibratedCamera;
|
||||
//typedef gtsam::RangeFactor<gtsam::SimpleCamera, gtsam::SimpleCamera> RangeFactorSimpleCamera;
|
||||
typedef gtsam::RangeFactor<gtsam::CalibratedCamera, gtsam::Point3> RangeFactorCalibratedCameraPoint;
|
||||
typedef gtsam::RangeFactor<gtsam::SimpleCamera, gtsam::Point3> RangeFactorSimpleCameraPoint;
|
||||
typedef gtsam::RangeFactor<gtsam::CalibratedCamera, gtsam::CalibratedCamera> RangeFactorCalibratedCamera;
|
||||
typedef gtsam::RangeFactor<gtsam::SimpleCamera, gtsam::SimpleCamera> RangeFactorSimpleCamera;
|
||||
|
||||
|
||||
#include <gtsam/slam/BearingFactor.h>
|
||||
template<POSE, POINT, ROTATION>
|
||||
#include <gtsam/sam/BearingFactor.h>
|
||||
template<POSE, POINT, BEARING>
|
||||
virtual class BearingFactor : gtsam::NoiseModelFactor {
|
||||
BearingFactor(size_t key1, size_t key2, const ROTATION& measured, const gtsam::noiseModel::Base* noiseModel);
|
||||
BearingFactor(size_t key1, size_t key2, const BEARING& measured, const gtsam::noiseModel::Base* noiseModel);
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
|
|
@ -2295,19 +2290,18 @@ virtual class BearingFactor : gtsam::NoiseModelFactor {
|
|||
|
||||
typedef gtsam::BearingFactor<gtsam::Pose2, gtsam::Point2, gtsam::Rot2> BearingFactor2D;
|
||||
|
||||
|
||||
#include <gtsam/slam/BearingRangeFactor.h>
|
||||
template<POSE, POINT, ROTATION>
|
||||
#include <gtsam/sam/BearingRangeFactor.h>
|
||||
template<POSE, POINT, BEARING, RANGE>
|
||||
virtual class BearingRangeFactor : gtsam::NoiseModelFactor {
|
||||
BearingRangeFactor(size_t poseKey, size_t pointKey, const ROTATION& measuredBearing, double measuredRange, const gtsam::noiseModel::Base* noiseModel);
|
||||
|
||||
pair<ROTATION, double> measured() const;
|
||||
BearingRangeFactor(size_t poseKey, size_t pointKey,
|
||||
const BEARING& measuredBearing, const RANGE& measuredRange,
|
||||
const gtsam::noiseModel::Base* noiseModel);
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
||||
typedef gtsam::BearingRangeFactor<gtsam::Pose2, gtsam::Point2, gtsam::Rot2> BearingRangeFactor2D;
|
||||
typedef gtsam::BearingRangeFactor<gtsam::Pose2, gtsam::Point2, gtsam::Rot2, double> BearingRangeFactor2D;
|
||||
|
||||
|
||||
#include <gtsam/slam/ProjectionFactor.h>
|
||||
|
|
@ -2354,18 +2348,33 @@ virtual class GeneralSFMFactor2 : gtsam::NoiseModelFactor {
|
|||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/slam/SmartProjectionFactor.h>
|
||||
class SmartProjectionParams {
|
||||
SmartProjectionParams();
|
||||
// TODO(frank): make these work:
|
||||
// void setLinearizationMode(LinearizationMode linMode);
|
||||
// void setDegeneracyMode(DegeneracyMode degMode);
|
||||
void setRankTolerance(double rankTol);
|
||||
void setEnableEPI(bool enableEPI);
|
||||
void setLandmarkDistanceThreshold(bool landmarkDistanceThreshold);
|
||||
void setDynamicOutlierRejectionThreshold(bool dynOutRejectionThreshold);
|
||||
};
|
||||
|
||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
||||
template<CALIBRATION>
|
||||
virtual class SmartProjectionPoseFactor : gtsam::NonlinearFactor {
|
||||
virtual class SmartProjectionPoseFactor: gtsam::NonlinearFactor {
|
||||
|
||||
SmartProjectionPoseFactor(double rankTol, double linThreshold,
|
||||
bool manageDegeneracy, bool enableEPI, const gtsam::Pose3& body_P_sensor);
|
||||
SmartProjectionPoseFactor(const gtsam::noiseModel::Base* noise,
|
||||
const CALIBRATION* K);
|
||||
SmartProjectionPoseFactor(const gtsam::noiseModel::Base* noise,
|
||||
const CALIBRATION* K,
|
||||
const gtsam::Pose3& body_P_sensor);
|
||||
SmartProjectionPoseFactor(const gtsam::noiseModel::Base* noise,
|
||||
const CALIBRATION* K,
|
||||
const gtsam::Pose3& body_P_sensor,
|
||||
const gtsam::SmartProjectionParams& params);
|
||||
|
||||
SmartProjectionPoseFactor(double rankTol);
|
||||
SmartProjectionPoseFactor();
|
||||
|
||||
void add(const gtsam::Point2& measured_i, size_t poseKey_i,
|
||||
const gtsam::noiseModel::Base* noise_i, const CALIBRATION* K_i);
|
||||
void add(const gtsam::Point2& measured_i, size_t poseKey_i);
|
||||
|
||||
// enabling serialization functionality
|
||||
//void serialize() const;
|
||||
|
|
@ -2438,7 +2447,7 @@ namespace imuBias {
|
|||
#include <gtsam/navigation/ImuBias.h>
|
||||
|
||||
class ConstantBias {
|
||||
// Standard Constructor
|
||||
// Constructors
|
||||
ConstantBias();
|
||||
ConstantBias(Vector biasAcc, Vector biasGyro);
|
||||
|
||||
|
|
@ -2470,136 +2479,143 @@ class ConstantBias {
|
|||
|
||||
}///\namespace imuBias
|
||||
|
||||
#include <gtsam/navigation/ImuFactor.h>
|
||||
class PoseVelocityBias{
|
||||
PoseVelocityBias(const gtsam::Pose3& pose, Vector velocity, const gtsam::imuBias::ConstantBias& bias);
|
||||
};
|
||||
class ImuFactorPreintegratedMeasurements {
|
||||
// Standard Constructor
|
||||
ImuFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredAccCovariance,Matrix measuredOmegaCovariance, Matrix integrationErrorCovariance, bool use2ndOrderIntegration);
|
||||
ImuFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredAccCovariance,Matrix measuredOmegaCovariance, Matrix integrationErrorCovariance);
|
||||
// ImuFactorPreintegratedMeasurements(const gtsam::ImuFactorPreintegratedMeasurements& rhs);
|
||||
#include <gtsam/navigation/NavState.h>
|
||||
class NavState {
|
||||
// Constructors
|
||||
NavState();
|
||||
NavState(const gtsam::Rot3& R, const gtsam::Point3& t, Vector v);
|
||||
NavState(const gtsam::Pose3& pose, Vector v);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::ImuFactorPreintegratedMeasurements& expected, double tol);
|
||||
bool equals(const gtsam::NavState& expected, double tol) const;
|
||||
|
||||
// Access
|
||||
gtsam::Rot3 attitude() const;
|
||||
gtsam::Point3 position() const;
|
||||
Vector velocity() const;
|
||||
gtsam::Pose3 pose() const;
|
||||
};
|
||||
|
||||
#include <gtsam/navigation/PreintegrationParams.h>
|
||||
class PreintegrationParams {
|
||||
PreintegrationParams(Vector n_gravity);
|
||||
// TODO(frank): add setters/getters or make this MATLAB wrapper feature
|
||||
};
|
||||
|
||||
#include <gtsam/navigation/PreintegrationBase.h>
|
||||
virtual class PreintegrationBase {
|
||||
// Constructors
|
||||
PreintegrationBase(const gtsam::PreintegrationParams* params);
|
||||
PreintegrationBase(const gtsam::PreintegrationParams* params,
|
||||
const gtsam::imuBias::ConstantBias& bias);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::PreintegrationBase& expected, double tol);
|
||||
|
||||
double deltaTij() const;
|
||||
Matrix deltaRij() const;
|
||||
gtsam::Rot3 deltaRij() const;
|
||||
Vector deltaPij() const;
|
||||
Vector deltaVij() const;
|
||||
Vector biasHatVector() const;
|
||||
Matrix delPdelBiasAcc() const;
|
||||
Matrix delPdelBiasOmega() const;
|
||||
Matrix delVdelBiasAcc() const;
|
||||
Matrix delVdelBiasOmega() const;
|
||||
Matrix delRdelBiasOmega() const;
|
||||
Matrix preintMeasCov() const;
|
||||
|
||||
// Standard Interface
|
||||
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
|
||||
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
|
||||
gtsam::PoseVelocityBias predict(const gtsam::Pose3& pose_i, Vector vel_i, const gtsam::imuBias::ConstantBias& bias,
|
||||
Vector gravity, Vector omegaCoriolis) const;
|
||||
gtsam::NavState predict(const gtsam::NavState& state_i,
|
||||
const gtsam::imuBias::ConstantBias& bias) const;
|
||||
};
|
||||
|
||||
virtual class ImuFactor : gtsam::NonlinearFactor {
|
||||
ImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias,
|
||||
const gtsam::ImuFactorPreintegratedMeasurements& preintegratedMeasurements, Vector gravity, Vector omegaCoriolis);
|
||||
ImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias,
|
||||
const gtsam::ImuFactorPreintegratedMeasurements& preintegratedMeasurements, Vector gravity, Vector omegaCoriolis,
|
||||
const gtsam::Pose3& body_P_sensor);
|
||||
#include <gtsam/navigation/ImuFactor.h>
|
||||
virtual class PreintegratedImuMeasurements: gtsam::PreintegrationBase {
|
||||
// Constructors
|
||||
PreintegratedImuMeasurements(const gtsam::PreintegrationParams* params);
|
||||
PreintegratedImuMeasurements(const gtsam::PreintegrationParams* params,
|
||||
const gtsam::imuBias::ConstantBias& bias);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::PreintegratedImuMeasurements& expected, double tol);
|
||||
|
||||
// Standard Interface
|
||||
gtsam::ImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
|
||||
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega,
|
||||
double deltaT);
|
||||
void resetIntegration();
|
||||
Matrix preintMeasCov() const;
|
||||
};
|
||||
|
||||
virtual class ImuFactor: gtsam::NonlinearFactor {
|
||||
ImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j,
|
||||
size_t bias,
|
||||
const gtsam::PreintegratedImuMeasurements& preintegratedMeasurements);
|
||||
|
||||
// Standard Interface
|
||||
gtsam::PreintegratedImuMeasurements preintegratedMeasurements() const;
|
||||
Vector evaluateError(const gtsam::Pose3& pose_i, Vector vel_i,
|
||||
const gtsam::Pose3& pose_j, Vector vel_j,
|
||||
const gtsam::imuBias::ConstantBias& bias);
|
||||
};
|
||||
|
||||
#include <gtsam/navigation/CombinedImuFactor.h>
|
||||
class CombinedImuFactorPreintegratedMeasurements {
|
||||
// Standard Constructor
|
||||
CombinedImuFactorPreintegratedMeasurements(
|
||||
const gtsam::imuBias::ConstantBias& bias,
|
||||
Matrix measuredAccCovariance,
|
||||
Matrix measuredOmegaCovariance,
|
||||
Matrix integrationErrorCovariance,
|
||||
Matrix biasAccCovariance,
|
||||
Matrix biasOmegaCovariance,
|
||||
Matrix biasAccOmegaInit);
|
||||
CombinedImuFactorPreintegratedMeasurements(
|
||||
const gtsam::imuBias::ConstantBias& bias,
|
||||
Matrix measuredAccCovariance,
|
||||
Matrix measuredOmegaCovariance,
|
||||
Matrix integrationErrorCovariance,
|
||||
Matrix biasAccCovariance,
|
||||
Matrix biasOmegaCovariance,
|
||||
Matrix biasAccOmegaInit,
|
||||
bool use2ndOrderIntegration);
|
||||
// CombinedImuFactorPreintegratedMeasurements(const gtsam::CombinedImuFactorPreintegratedMeasurements& rhs);
|
||||
|
||||
virtual class PreintegratedCombinedMeasurements: gtsam::PreintegrationBase {
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::CombinedImuFactorPreintegratedMeasurements& expected, double tol);
|
||||
|
||||
double deltaTij() const;
|
||||
Matrix deltaRij() const;
|
||||
Vector deltaPij() const;
|
||||
Vector deltaVij() const;
|
||||
Vector biasHatVector() const;
|
||||
Matrix delPdelBiasAcc() const;
|
||||
Matrix delPdelBiasOmega() const;
|
||||
Matrix delVdelBiasAcc() const;
|
||||
Matrix delVdelBiasOmega() const;
|
||||
Matrix delRdelBiasOmega() const;
|
||||
Matrix preintMeasCov() const;
|
||||
bool equals(const gtsam::PreintegratedCombinedMeasurements& expected,
|
||||
double tol);
|
||||
|
||||
// Standard Interface
|
||||
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
|
||||
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
|
||||
gtsam::PoseVelocityBias predict(const gtsam::Pose3& pose_i, Vector vel_i, const gtsam::imuBias::ConstantBias& bias,
|
||||
Vector gravity, Vector omegaCoriolis) const;
|
||||
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega,
|
||||
double deltaT);
|
||||
void resetIntegration();
|
||||
Matrix preintMeasCov() const;
|
||||
};
|
||||
|
||||
virtual class CombinedImuFactor : gtsam::NonlinearFactor {
|
||||
CombinedImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias_i, size_t bias_j,
|
||||
const gtsam::CombinedImuFactorPreintegratedMeasurements& CombinedPreintegratedMeasurements, Vector gravity, Vector omegaCoriolis);
|
||||
virtual class CombinedImuFactor: gtsam::NonlinearFactor {
|
||||
CombinedImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j,
|
||||
size_t bias_i, size_t bias_j,
|
||||
const gtsam::PreintegratedCombinedMeasurements& CombinedPreintegratedMeasurements);
|
||||
|
||||
// Standard Interface
|
||||
gtsam::CombinedImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
|
||||
gtsam::PreintegratedCombinedMeasurements preintegratedMeasurements() const;
|
||||
Vector evaluateError(const gtsam::Pose3& pose_i, Vector vel_i,
|
||||
const gtsam::Pose3& pose_j, Vector vel_j,
|
||||
const gtsam::imuBias::ConstantBias& bias_i,
|
||||
const gtsam::imuBias::ConstantBias& bias_j);
|
||||
};
|
||||
|
||||
#include <gtsam/navigation/AHRSFactor.h>
|
||||
class AHRSFactorPreintegratedMeasurements {
|
||||
class PreintegratedAhrsMeasurements {
|
||||
// Standard Constructor
|
||||
AHRSFactorPreintegratedMeasurements(Vector bias, Matrix measuredOmegaCovariance);
|
||||
AHRSFactorPreintegratedMeasurements(Vector bias, Matrix measuredOmegaCovariance);
|
||||
AHRSFactorPreintegratedMeasurements(const gtsam::AHRSFactorPreintegratedMeasurements& rhs);
|
||||
PreintegratedAhrsMeasurements(Vector bias, Matrix measuredOmegaCovariance);
|
||||
PreintegratedAhrsMeasurements(Vector bias, Matrix measuredOmegaCovariance);
|
||||
PreintegratedAhrsMeasurements(const gtsam::PreintegratedAhrsMeasurements& rhs);
|
||||
|
||||
// Testable
|
||||
void print(string s) const;
|
||||
bool equals(const gtsam::AHRSFactorPreintegratedMeasurements& expected, double tol);
|
||||
bool equals(const gtsam::PreintegratedAhrsMeasurements& expected, double tol);
|
||||
|
||||
// get Data
|
||||
Matrix deltaRij() const;
|
||||
gtsam::Rot3 deltaRij() const;
|
||||
double deltaTij() const;
|
||||
Vector biasHat() const;
|
||||
|
||||
// Standard Interface
|
||||
void integrateMeasurement(Vector measuredOmega, double deltaT);
|
||||
void integrateMeasurement(Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
|
||||
void resetIntegration() ;
|
||||
};
|
||||
|
||||
virtual class AHRSFactor : gtsam::NonlinearFactor {
|
||||
AHRSFactor(size_t rot_i, size_t rot_j,size_t bias,
|
||||
const gtsam::AHRSFactorPreintegratedMeasurements& preintegratedMeasurements, Vector omegaCoriolis);
|
||||
const gtsam::PreintegratedAhrsMeasurements& preintegratedMeasurements, Vector omegaCoriolis);
|
||||
AHRSFactor(size_t rot_i, size_t rot_j, size_t bias,
|
||||
const gtsam::AHRSFactorPreintegratedMeasurements& preintegratedMeasurements, Vector omegaCoriolis,
|
||||
const gtsam::PreintegratedAhrsMeasurements& preintegratedMeasurements, Vector omegaCoriolis,
|
||||
const gtsam::Pose3& body_P_sensor);
|
||||
|
||||
// Standard Interface
|
||||
gtsam::AHRSFactorPreintegratedMeasurements preintegratedMeasurements() const;
|
||||
gtsam::PreintegratedAhrsMeasurements preintegratedMeasurements() const;
|
||||
Vector evaluateError(const gtsam::Rot3& rot_i, const gtsam::Rot3& rot_j,
|
||||
Vector bias) const;
|
||||
gtsam::Rot3 predict(const gtsam::Rot3& rot_i, Vector bias,
|
||||
const gtsam::AHRSFactorPreintegratedMeasurements& preintegratedMeasurements,
|
||||
const gtsam::PreintegratedAhrsMeasurements& preintegratedMeasurements,
|
||||
Vector omegaCoriolis) const;
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
repo: 8a21fd850624c931e448cbcfb38168cb2717c790
|
||||
node: 10219c95fe653d4962aa9db4946f6fbea96dd740
|
||||
node: b30b87236a1b1552af32ac34075ee5696a9b5a33
|
||||
branch: 3.2
|
||||
tag: 3.2.4
|
||||
tag: 3.2.7
|
||||
|
|
|
|||
|
|
@ -27,3 +27,6 @@ ffa86ffb557094721ca71dcea6aed2651b9fd610 3.2.0
|
|||
6b38706d90a9fe182e66ab88477b3dbde34b9f66 3.2.1
|
||||
1306d75b4a21891e59ff9bd96678882cf831e39f 3.2.2
|
||||
36fd1ba04c120cfdd90f3e4cede47f43b21d19ad 3.2.3
|
||||
10219c95fe653d4962aa9db4946f6fbea96dd740 3.2.4
|
||||
bdd17ee3b1b3a166cd5ec36dcad4fc1f3faf774a 3.2.5
|
||||
c58038c56923e0fd86de3ded18e03df442e66dfb 3.2.6
|
||||
|
|
|
|||
|
|
@ -301,7 +301,7 @@ if(EIGEN_INCLUDE_INSTALL_DIR)
|
|||
)
|
||||
else()
|
||||
set(INCLUDE_INSTALL_DIR
|
||||
"${CMAKE_INSTALL_PREFIX}/include/eigen3"
|
||||
"include/eigen3"
|
||||
CACHE INTERNAL
|
||||
"The directory where we install the header files (internal)"
|
||||
)
|
||||
|
|
@ -404,7 +404,7 @@ if(cmake_generator_tolower MATCHES "makefile")
|
|||
message(STATUS "make install | Install to ${CMAKE_INSTALL_PREFIX}. To change that:")
|
||||
message(STATUS " | cmake . -DCMAKE_INSTALL_PREFIX=yourpath")
|
||||
message(STATUS " | Eigen headers will then be installed to:")
|
||||
message(STATUS " | ${INCLUDE_INSTALL_DIR}")
|
||||
message(STATUS " | ${CMAKE_INSTALL_PREFIX}/${INCLUDE_INSTALL_DIR}")
|
||||
message(STATUS " | To install Eigen headers to a separate location, do:")
|
||||
message(STATUS " | cmake . -DEIGEN_INCLUDE_INSTALL_DIR=yourpath")
|
||||
message(STATUS "make doc | Generate the API documentation, requires Doxygen & LaTeX")
|
||||
|
|
|
|||
|
|
@ -123,7 +123,7 @@
|
|||
#undef bool
|
||||
#undef vector
|
||||
#undef pixel
|
||||
#elif defined __ARM_NEON__
|
||||
#elif defined __ARM_NEON
|
||||
#define EIGEN_VECTORIZE
|
||||
#define EIGEN_VECTORIZE_NEON
|
||||
#include <arm_neon.h>
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@
|
|||
/**
|
||||
* \defgroup SparseCore_Module SparseCore module
|
||||
*
|
||||
* This module provides a sparse matrix representation, and basic associatd matrix manipulations
|
||||
* This module provides a sparse matrix representation, and basic associated matrix manipulations
|
||||
* and operations.
|
||||
*
|
||||
* See the \ref TutorialSparse "Sparse tutorial"
|
||||
|
|
|
|||
|
|
@ -235,6 +235,11 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
|||
}
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
|
||||
|
|
@ -434,6 +439,8 @@ template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
|
|||
template<typename MatrixType, int _UpLo>
|
||||
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
|
||||
|
|
@ -457,7 +464,7 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
|
|||
*/
|
||||
template<typename MatrixType, int _UpLo>
|
||||
template<typename Derived>
|
||||
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename NumTraits<typename MatrixType::Scalar>::Real& sigma)
|
||||
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
|
||||
{
|
||||
const Index size = w.rows();
|
||||
if (m_isInitialized)
|
||||
|
|
|
|||
|
|
@ -174,6 +174,12 @@ template<typename _MatrixType, int _UpLo> class LLT
|
|||
LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* Used to compute and store L
|
||||
* The strict upper part is not used and even not initialized.
|
||||
|
|
@ -283,7 +289,7 @@ template<typename Scalar> struct llt_inplace<Scalar, Lower>
|
|||
return k;
|
||||
mat.coeffRef(k,k) = x = sqrt(x);
|
||||
if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
|
||||
if (rs>0) A21 *= RealScalar(1)/x;
|
||||
if (rs>0) A21 /= x;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
|
@ -384,6 +390,8 @@ template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
|
|||
template<typename MatrixType, int _UpLo>
|
||||
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
|
|
|
|||
|
|
@ -60,7 +60,7 @@ template<> struct mkl_llt<EIGTYPE> \
|
|||
lda = m.outerStride(); \
|
||||
\
|
||||
info = LAPACKE_##MKLPREFIX##potrf( matrix_order, uplo, size, (MKLTYPE*)a, lda ); \
|
||||
info = (info==0) ? -1 : 1; \
|
||||
info = (info==0) ? -1 : info>0 ? info-1 : size; \
|
||||
return info; \
|
||||
} \
|
||||
}; \
|
||||
|
|
|
|||
|
|
@ -78,7 +78,7 @@ cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
|
|||
{
|
||||
res.itype = CHOLMOD_INT;
|
||||
}
|
||||
else if (internal::is_same<_Index,UF_long>::value)
|
||||
else if (internal::is_same<_Index,SuiteSparse_long>::value)
|
||||
{
|
||||
res.itype = CHOLMOD_LONG;
|
||||
}
|
||||
|
|
@ -395,7 +395,7 @@ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimpl
|
|||
CholmodSimplicialLLT(const MatrixType& matrix) : Base()
|
||||
{
|
||||
init();
|
||||
compute(matrix);
|
||||
Base::compute(matrix);
|
||||
}
|
||||
|
||||
~CholmodSimplicialLLT() {}
|
||||
|
|
@ -442,7 +442,7 @@ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimp
|
|||
CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
|
||||
{
|
||||
init();
|
||||
compute(matrix);
|
||||
Base::compute(matrix);
|
||||
}
|
||||
|
||||
~CholmodSimplicialLDLT() {}
|
||||
|
|
@ -487,7 +487,7 @@ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSuper
|
|||
CholmodSupernodalLLT(const MatrixType& matrix) : Base()
|
||||
{
|
||||
init();
|
||||
compute(matrix);
|
||||
Base::compute(matrix);
|
||||
}
|
||||
|
||||
~CholmodSupernodalLLT() {}
|
||||
|
|
@ -534,7 +534,7 @@ class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecom
|
|||
CholmodDecomposition(const MatrixType& matrix) : Base()
|
||||
{
|
||||
init();
|
||||
compute(matrix);
|
||||
Base::compute(matrix);
|
||||
}
|
||||
|
||||
~CholmodDecomposition() {}
|
||||
|
|
|
|||
|
|
@ -124,6 +124,21 @@ class Array
|
|||
}
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
|
||||
Array(Array&& other)
|
||||
: Base(std::move(other))
|
||||
{
|
||||
Base::_check_template_params();
|
||||
if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic)
|
||||
Base::_set_noalias(other);
|
||||
}
|
||||
Array& operator=(Array&& other)
|
||||
{
|
||||
other.swap(*this);
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
|
||||
*
|
||||
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
|
||||
|
|
|
|||
|
|
@ -46,9 +46,6 @@ template<typename Derived> class ArrayBase
|
|||
|
||||
typedef ArrayBase Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl;
|
||||
|
||||
using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
|
||||
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
|
||||
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<Derived>::Index Index;
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
|
|
@ -56,6 +53,7 @@ template<typename Derived> class ArrayBase
|
|||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
typedef DenseBase<Derived> Base;
|
||||
using Base::operator*;
|
||||
using Base::RowsAtCompileTime;
|
||||
using Base::ColsAtCompileTime;
|
||||
using Base::SizeAtCompileTime;
|
||||
|
|
|
|||
|
|
@ -439,19 +439,26 @@ struct assign_impl<Derived1, Derived2, SliceVectorizedTraversal, NoUnrolling, Ve
|
|||
typedef typename Derived1::Index Index;
|
||||
static inline void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
typedef packet_traits<typename Derived1::Scalar> PacketTraits;
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
typedef packet_traits<Scalar> PacketTraits;
|
||||
enum {
|
||||
packetSize = PacketTraits::size,
|
||||
alignable = PacketTraits::AlignedOnScalar,
|
||||
dstAlignment = alignable ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
|
||||
dstIsAligned = assign_traits<Derived1,Derived2>::DstIsAligned,
|
||||
dstAlignment = alignable ? Aligned : int(dstIsAligned),
|
||||
srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
|
||||
};
|
||||
const Scalar *dst_ptr = &dst.coeffRef(0,0);
|
||||
if((!bool(dstIsAligned)) && (size_t(dst_ptr) % sizeof(Scalar))>0)
|
||||
{
|
||||
// the pointer is not aligend-on scalar, so alignment is not possible
|
||||
return assign_impl<Derived1,Derived2,DefaultTraversal,NoUnrolling>::run(dst, src);
|
||||
}
|
||||
const Index packetAlignedMask = packetSize - 1;
|
||||
const Index innerSize = dst.innerSize();
|
||||
const Index outerSize = dst.outerSize();
|
||||
const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0;
|
||||
Index alignedStart = ((!alignable) || assign_traits<Derived1,Derived2>::DstIsAligned) ? 0
|
||||
: internal::first_aligned(&dst.coeffRef(0,0), innerSize);
|
||||
Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned(dst_ptr, innerSize);
|
||||
|
||||
for(Index outer = 0; outer < outerSize; ++outer)
|
||||
{
|
||||
|
|
|
|||
|
|
@ -66,8 +66,9 @@ struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprTyp
|
|||
: ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
|
||||
: int(traits<XprType>::MaxColsAtCompileTime),
|
||||
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
|
||||
IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
|
||||
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
|
||||
IsDense = is_same<StorageKind,Dense>::value,
|
||||
IsRowMajor = (IsDense&&MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
|
||||
: (IsDense&&MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
|
||||
: XprTypeIsRowMajor,
|
||||
HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor),
|
||||
InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
|
||||
|
|
|
|||
|
|
@ -1,154 +0,0 @@
|
|||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_COMMAINITIALIZER_H
|
||||
#define EIGEN_COMMAINITIALIZER_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class CommaInitializer
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Helper class used by the comma initializer operator
|
||||
*
|
||||
* This class is internally used to implement the comma initializer feature. It is
|
||||
* the return type of MatrixBase::operator<<, and most of the time this is the only
|
||||
* way it is used.
|
||||
*
|
||||
* \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
|
||||
*/
|
||||
template<typename XprType>
|
||||
struct CommaInitializer
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::Index Index;
|
||||
|
||||
inline CommaInitializer(XprType& xpr, const Scalar& s)
|
||||
: m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1)
|
||||
{
|
||||
m_xpr.coeffRef(0,0) = s;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline CommaInitializer(XprType& xpr, const DenseBase<OtherDerived>& other)
|
||||
: m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows())
|
||||
{
|
||||
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
|
||||
}
|
||||
|
||||
/* Copy/Move constructor which transfers ownership. This is crucial in
|
||||
* absence of return value optimization to avoid assertions during destruction. */
|
||||
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
|
||||
inline CommaInitializer(const CommaInitializer& o)
|
||||
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
|
||||
// Mark original object as finished. In absence of R-value references we need to const_cast:
|
||||
const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
|
||||
const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
|
||||
const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
|
||||
}
|
||||
|
||||
/* inserts a scalar value in the target matrix */
|
||||
CommaInitializer& operator,(const Scalar& s)
|
||||
{
|
||||
if (m_col==m_xpr.cols())
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
m_currentBlockRows = 1;
|
||||
eigen_assert(m_row<m_xpr.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
eigen_assert(m_col<m_xpr.cols()
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
eigen_assert(m_currentBlockRows==1);
|
||||
m_xpr.coeffRef(m_row, m_col++) = s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/* inserts a matrix expression in the target matrix */
|
||||
template<typename OtherDerived>
|
||||
CommaInitializer& operator,(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
if(other.cols()==0 || other.rows()==0)
|
||||
return *this;
|
||||
if (m_col==m_xpr.cols())
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
m_currentBlockRows = other.rows();
|
||||
eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
eigen_assert(m_col<m_xpr.cols()
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
eigen_assert(m_currentBlockRows==other.rows());
|
||||
if (OtherDerived::SizeAtCompileTime != Dynamic)
|
||||
m_xpr.template block<OtherDerived::RowsAtCompileTime != Dynamic ? OtherDerived::RowsAtCompileTime : 1,
|
||||
OtherDerived::ColsAtCompileTime != Dynamic ? OtherDerived::ColsAtCompileTime : 1>
|
||||
(m_row, m_col) = other;
|
||||
else
|
||||
m_xpr.block(m_row, m_col, other.rows(), other.cols()) = other;
|
||||
m_col += other.cols();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline ~CommaInitializer()
|
||||
{
|
||||
eigen_assert((m_row+m_currentBlockRows) == m_xpr.rows()
|
||||
&& m_col == m_xpr.cols()
|
||||
&& "Too few coefficients passed to comma initializer (operator<<)");
|
||||
}
|
||||
|
||||
/** \returns the built matrix once all its coefficients have been set.
|
||||
* Calling finished is 100% optional. Its purpose is to write expressions
|
||||
* like this:
|
||||
* \code
|
||||
* quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
|
||||
* \endcode
|
||||
*/
|
||||
inline XprType& finished() { return m_xpr; }
|
||||
|
||||
XprType& m_xpr; // target expression
|
||||
Index m_row; // current row id
|
||||
Index m_col; // current col id
|
||||
Index m_currentBlockRows; // current block height
|
||||
};
|
||||
|
||||
/** \anchor MatrixBaseCommaInitRef
|
||||
* Convenient operator to set the coefficients of a matrix.
|
||||
*
|
||||
* The coefficients must be provided in a row major order and exactly match
|
||||
* the size of the matrix. Otherwise an assertion is raised.
|
||||
*
|
||||
* Example: \include MatrixBase_set.cpp
|
||||
* Output: \verbinclude MatrixBase_set.out
|
||||
*
|
||||
* \note According the c++ standard, the argument expressions of this comma initializer are evaluated in arbitrary order.
|
||||
*
|
||||
* \sa CommaInitializer::finished(), class CommaInitializer
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline CommaInitializer<Derived> DenseBase<Derived>::operator<< (const Scalar& s)
|
||||
{
|
||||
return CommaInitializer<Derived>(*static_cast<Derived*>(this), s);
|
||||
}
|
||||
|
||||
/** \sa operator<<(const Scalar&) */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline CommaInitializer<Derived>
|
||||
DenseBase<Derived>::operator<<(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
return CommaInitializer<Derived>(*static_cast<Derived *>(this), other);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_COMMAINITIALIZER_H
|
||||
|
|
@ -81,7 +81,8 @@ struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
|
|||
)
|
||||
),
|
||||
Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
|
||||
CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + functor_traits<BinaryOp>::Cost
|
||||
Cost0 = EIGEN_ADD_COST(LhsCoeffReadCost,RhsCoeffReadCost),
|
||||
CoeffReadCost = EIGEN_ADD_COST(Cost0,functor_traits<BinaryOp>::Cost)
|
||||
};
|
||||
};
|
||||
} // end namespace internal
|
||||
|
|
|
|||
|
|
@ -47,7 +47,7 @@ struct traits<CwiseUnaryOp<UnaryOp, XprType> >
|
|||
Flags = _XprTypeNested::Flags & (
|
||||
HereditaryBits | LinearAccessBit | AlignedBit
|
||||
| (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
|
||||
CoeffReadCost = _XprTypeNested::CoeffReadCost + functor_traits<UnaryOp>::Cost
|
||||
CoeffReadCost = EIGEN_ADD_COST(_XprTypeNested::CoeffReadCost, functor_traits<UnaryOp>::Cost)
|
||||
};
|
||||
};
|
||||
}
|
||||
|
|
|
|||
|
|
@ -41,14 +41,13 @@ static inline void check_DenseIndex_is_signed() {
|
|||
template<typename Derived> class DenseBase
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
: public internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
|
||||
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>
|
||||
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real,
|
||||
DenseCoeffsBase<Derived> >
|
||||
#else
|
||||
: public DenseCoeffsBase<Derived>
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
{
|
||||
public:
|
||||
using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
|
||||
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
|
||||
|
||||
class InnerIterator;
|
||||
|
||||
|
|
@ -63,8 +62,9 @@ template<typename Derived> class DenseBase
|
|||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef internal::special_scalar_op_base<Derived,Scalar,RealScalar, DenseCoeffsBase<Derived> > Base;
|
||||
|
||||
typedef DenseCoeffsBase<Derived> Base;
|
||||
using Base::operator*;
|
||||
using Base::derived;
|
||||
using Base::const_cast_derived;
|
||||
using Base::rows;
|
||||
|
|
@ -183,10 +183,6 @@ template<typename Derived> class DenseBase
|
|||
/** \returns the number of nonzero coefficients which is in practice the number
|
||||
* of stored coefficients. */
|
||||
inline Index nonZeros() const { return size(); }
|
||||
/** \returns true if either the number of rows or the number of columns is equal to 1.
|
||||
* In other words, this function returns
|
||||
* \code rows()==1 || cols()==1 \endcode
|
||||
* \sa rows(), cols(), IsVectorAtCompileTime. */
|
||||
|
||||
/** \returns the outer size.
|
||||
*
|
||||
|
|
@ -266,11 +262,13 @@ template<typename Derived> class DenseBase
|
|||
template<typename OtherDerived>
|
||||
Derived& operator=(const ReturnByValue<OtherDerived>& func);
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** Copies \a other into *this without evaluating other. \returns a reference to *this. */
|
||||
/** \internal Copies \a other into *this without evaluating other. \returns a reference to *this. */
|
||||
template<typename OtherDerived>
|
||||
Derived& lazyAssign(const DenseBase<OtherDerived>& other);
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
/** \internal Evaluates \a other into *this. \returns a reference to *this. */
|
||||
template<typename OtherDerived>
|
||||
Derived& lazyAssign(const ReturnByValue<OtherDerived>& other);
|
||||
|
||||
CommaInitializer<Derived> operator<< (const Scalar& s);
|
||||
|
||||
|
|
|
|||
|
|
@ -122,33 +122,41 @@ template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseSt
|
|||
{
|
||||
internal::plain_array<T,Size,_Options> m_data;
|
||||
public:
|
||||
inline DenseStorage() {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
DenseStorage() {}
|
||||
DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()) {}
|
||||
inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); }
|
||||
static inline DenseIndex rows(void) {return _Rows;}
|
||||
static inline DenseIndex cols(void) {return _Cols;}
|
||||
inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
inline void resize(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
inline const T *data() const { return m_data.array; }
|
||||
inline T *data() { return m_data.array; }
|
||||
DenseStorage(const DenseStorage& other) : m_data(other.m_data) {}
|
||||
DenseStorage& operator=(const DenseStorage& other)
|
||||
{
|
||||
if (this != &other) m_data = other.m_data;
|
||||
return *this;
|
||||
}
|
||||
DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); }
|
||||
static DenseIndex rows(void) {return _Rows;}
|
||||
static DenseIndex cols(void) {return _Cols;}
|
||||
void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
void resize(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
const T *data() const { return m_data.array; }
|
||||
T *data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// null matrix
|
||||
template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0, _Rows, _Cols, _Options>
|
||||
{
|
||||
public:
|
||||
inline DenseStorage() {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert) {}
|
||||
inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
inline void swap(DenseStorage& ) {}
|
||||
static inline DenseIndex rows(void) {return _Rows;}
|
||||
static inline DenseIndex cols(void) {return _Cols;}
|
||||
inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
inline void resize(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
inline const T *data() const { return 0; }
|
||||
inline T *data() { return 0; }
|
||||
DenseStorage() {}
|
||||
DenseStorage(internal::constructor_without_unaligned_array_assert) {}
|
||||
DenseStorage(const DenseStorage&) {}
|
||||
DenseStorage& operator=(const DenseStorage&) { return *this; }
|
||||
DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
void swap(DenseStorage& ) {}
|
||||
static DenseIndex rows(void) {return _Rows;}
|
||||
static DenseIndex cols(void) {return _Cols;}
|
||||
void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
void resize(DenseIndex,DenseIndex,DenseIndex) {}
|
||||
const T *data() const { return 0; }
|
||||
T *data() { return 0; }
|
||||
};
|
||||
|
||||
// more specializations for null matrices; these are necessary to resolve ambiguities
|
||||
|
|
@ -168,18 +176,29 @@ template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic
|
|||
DenseIndex m_rows;
|
||||
DenseIndex m_cols;
|
||||
public:
|
||||
inline DenseStorage() : m_rows(0), m_cols(0) {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
DenseStorage() : m_rows(0), m_cols(0) {}
|
||||
DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
|
||||
inline DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) : m_rows(nbRows), m_cols(nbCols) {}
|
||||
inline void swap(DenseStorage& other)
|
||||
DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows), m_cols(other.m_cols) {}
|
||||
DenseStorage& operator=(const DenseStorage& other)
|
||||
{
|
||||
if (this != &other)
|
||||
{
|
||||
m_data = other.m_data;
|
||||
m_rows = other.m_rows;
|
||||
m_cols = other.m_cols;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) : m_rows(nbRows), m_cols(nbCols) {}
|
||||
void swap(DenseStorage& other)
|
||||
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
|
||||
inline DenseIndex rows() const {return m_rows;}
|
||||
inline DenseIndex cols() const {return m_cols;}
|
||||
inline void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; }
|
||||
inline void resize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; }
|
||||
inline const T *data() const { return m_data.array; }
|
||||
inline T *data() { return m_data.array; }
|
||||
DenseIndex rows() const {return m_rows;}
|
||||
DenseIndex cols() const {return m_cols;}
|
||||
void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; }
|
||||
void resize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; }
|
||||
const T *data() const { return m_data.array; }
|
||||
T *data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// dynamic-size matrix with fixed-size storage and fixed width
|
||||
|
|
@ -188,17 +207,27 @@ template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Si
|
|||
internal::plain_array<T,Size,_Options> m_data;
|
||||
DenseIndex m_rows;
|
||||
public:
|
||||
inline DenseStorage() : m_rows(0) {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
DenseStorage() : m_rows(0) {}
|
||||
DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
|
||||
inline DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex) : m_rows(nbRows) {}
|
||||
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
|
||||
inline DenseIndex rows(void) const {return m_rows;}
|
||||
inline DenseIndex cols(void) const {return _Cols;}
|
||||
inline void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; }
|
||||
inline void resize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; }
|
||||
inline const T *data() const { return m_data.array; }
|
||||
inline T *data() { return m_data.array; }
|
||||
DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows) {}
|
||||
DenseStorage& operator=(const DenseStorage& other)
|
||||
{
|
||||
if (this != &other)
|
||||
{
|
||||
m_data = other.m_data;
|
||||
m_rows = other.m_rows;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex) : m_rows(nbRows) {}
|
||||
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
|
||||
DenseIndex rows(void) const {return m_rows;}
|
||||
DenseIndex cols(void) const {return _Cols;}
|
||||
void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; }
|
||||
void resize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; }
|
||||
const T *data() const { return m_data.array; }
|
||||
T *data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// dynamic-size matrix with fixed-size storage and fixed height
|
||||
|
|
@ -207,17 +236,27 @@ template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Si
|
|||
internal::plain_array<T,Size,_Options> m_data;
|
||||
DenseIndex m_cols;
|
||||
public:
|
||||
inline DenseStorage() : m_cols(0) {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
DenseStorage() : m_cols(0) {}
|
||||
DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
|
||||
inline DenseStorage(DenseIndex, DenseIndex, DenseIndex nbCols) : m_cols(nbCols) {}
|
||||
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
|
||||
inline DenseIndex rows(void) const {return _Rows;}
|
||||
inline DenseIndex cols(void) const {return m_cols;}
|
||||
inline void conservativeResize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; }
|
||||
inline void resize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; }
|
||||
inline const T *data() const { return m_data.array; }
|
||||
inline T *data() { return m_data.array; }
|
||||
DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_cols(other.m_cols) {}
|
||||
DenseStorage& operator=(const DenseStorage& other)
|
||||
{
|
||||
if (this != &other)
|
||||
{
|
||||
m_data = other.m_data;
|
||||
m_cols = other.m_cols;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
DenseStorage(DenseIndex, DenseIndex, DenseIndex nbCols) : m_cols(nbCols) {}
|
||||
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
|
||||
DenseIndex rows(void) const {return _Rows;}
|
||||
DenseIndex cols(void) const {return m_cols;}
|
||||
void conservativeResize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; }
|
||||
void resize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; }
|
||||
const T *data() const { return m_data.array; }
|
||||
T *data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// purely dynamic matrix.
|
||||
|
|
@ -227,18 +266,35 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
|
|||
DenseIndex m_rows;
|
||||
DenseIndex m_cols;
|
||||
public:
|
||||
inline DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
|
||||
DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(0), m_rows(0), m_cols(0) {}
|
||||
inline DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
|
||||
DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
|
||||
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows), m_cols(nbCols)
|
||||
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
|
||||
inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); }
|
||||
inline void swap(DenseStorage& other)
|
||||
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
|
||||
DenseStorage(DenseStorage&& other)
|
||||
: m_data(std::move(other.m_data))
|
||||
, m_rows(std::move(other.m_rows))
|
||||
, m_cols(std::move(other.m_cols))
|
||||
{
|
||||
other.m_data = nullptr;
|
||||
}
|
||||
DenseStorage& operator=(DenseStorage&& other)
|
||||
{
|
||||
using std::swap;
|
||||
swap(m_data, other.m_data);
|
||||
swap(m_rows, other.m_rows);
|
||||
swap(m_cols, other.m_cols);
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); }
|
||||
void swap(DenseStorage& other)
|
||||
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
|
||||
inline DenseIndex rows(void) const {return m_rows;}
|
||||
inline DenseIndex cols(void) const {return m_cols;}
|
||||
inline void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
|
||||
DenseIndex rows(void) const {return m_rows;}
|
||||
DenseIndex cols(void) const {return m_cols;}
|
||||
void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
|
||||
{
|
||||
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*m_cols);
|
||||
m_rows = nbRows;
|
||||
|
|
@ -258,8 +314,11 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
|
|||
m_rows = nbRows;
|
||||
m_cols = nbCols;
|
||||
}
|
||||
inline const T *data() const { return m_data; }
|
||||
inline T *data() { return m_data; }
|
||||
const T *data() const { return m_data; }
|
||||
T *data() { return m_data; }
|
||||
private:
|
||||
DenseStorage(const DenseStorage&);
|
||||
DenseStorage& operator=(const DenseStorage&);
|
||||
};
|
||||
|
||||
// matrix with dynamic width and fixed height (so that matrix has dynamic size).
|
||||
|
|
@ -268,15 +327,30 @@ template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Ro
|
|||
T *m_data;
|
||||
DenseIndex m_cols;
|
||||
public:
|
||||
inline DenseStorage() : m_data(0), m_cols(0) {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
|
||||
inline DenseStorage(DenseIndex size, DenseIndex, DenseIndex nbCols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(nbCols)
|
||||
DenseStorage() : m_data(0), m_cols(0) {}
|
||||
DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
|
||||
DenseStorage(DenseIndex size, DenseIndex, DenseIndex nbCols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(nbCols)
|
||||
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
|
||||
inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); }
|
||||
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
|
||||
static inline DenseIndex rows(void) {return _Rows;}
|
||||
inline DenseIndex cols(void) const {return m_cols;}
|
||||
inline void conservativeResize(DenseIndex size, DenseIndex, DenseIndex nbCols)
|
||||
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
|
||||
DenseStorage(DenseStorage&& other)
|
||||
: m_data(std::move(other.m_data))
|
||||
, m_cols(std::move(other.m_cols))
|
||||
{
|
||||
other.m_data = nullptr;
|
||||
}
|
||||
DenseStorage& operator=(DenseStorage&& other)
|
||||
{
|
||||
using std::swap;
|
||||
swap(m_data, other.m_data);
|
||||
swap(m_cols, other.m_cols);
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); }
|
||||
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
|
||||
static DenseIndex rows(void) {return _Rows;}
|
||||
DenseIndex cols(void) const {return m_cols;}
|
||||
void conservativeResize(DenseIndex size, DenseIndex, DenseIndex nbCols)
|
||||
{
|
||||
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, _Rows*m_cols);
|
||||
m_cols = nbCols;
|
||||
|
|
@ -294,8 +368,11 @@ template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Ro
|
|||
}
|
||||
m_cols = nbCols;
|
||||
}
|
||||
inline const T *data() const { return m_data; }
|
||||
inline T *data() { return m_data; }
|
||||
const T *data() const { return m_data; }
|
||||
T *data() { return m_data; }
|
||||
private:
|
||||
DenseStorage(const DenseStorage&);
|
||||
DenseStorage& operator=(const DenseStorage&);
|
||||
};
|
||||
|
||||
// matrix with dynamic height and fixed width (so that matrix has dynamic size).
|
||||
|
|
@ -304,15 +381,30 @@ template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dyn
|
|||
T *m_data;
|
||||
DenseIndex m_rows;
|
||||
public:
|
||||
inline DenseStorage() : m_data(0), m_rows(0) {}
|
||||
inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
|
||||
inline DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows)
|
||||
DenseStorage() : m_data(0), m_rows(0) {}
|
||||
DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
|
||||
DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows)
|
||||
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
|
||||
inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); }
|
||||
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
|
||||
inline DenseIndex rows(void) const {return m_rows;}
|
||||
static inline DenseIndex cols(void) {return _Cols;}
|
||||
inline void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex)
|
||||
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
|
||||
DenseStorage(DenseStorage&& other)
|
||||
: m_data(std::move(other.m_data))
|
||||
, m_rows(std::move(other.m_rows))
|
||||
{
|
||||
other.m_data = nullptr;
|
||||
}
|
||||
DenseStorage& operator=(DenseStorage&& other)
|
||||
{
|
||||
using std::swap;
|
||||
swap(m_data, other.m_data);
|
||||
swap(m_rows, other.m_rows);
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); }
|
||||
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
|
||||
DenseIndex rows(void) const {return m_rows;}
|
||||
static DenseIndex cols(void) {return _Cols;}
|
||||
void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex)
|
||||
{
|
||||
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*_Cols);
|
||||
m_rows = nbRows;
|
||||
|
|
@ -330,8 +422,11 @@ template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dyn
|
|||
}
|
||||
m_rows = nbRows;
|
||||
}
|
||||
inline const T *data() const { return m_data; }
|
||||
inline T *data() { return m_data; }
|
||||
const T *data() const { return m_data; }
|
||||
T *data() { return m_data; }
|
||||
private:
|
||||
DenseStorage(const DenseStorage&);
|
||||
DenseStorage& operator=(const DenseStorage&);
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
|
|
|||
|
|
@ -34,8 +34,9 @@ struct traits<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
|
|||
_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))),
|
||||
_LinearAccessMask = (RowsAtCompileTime==1 || ColsAtCompileTime==1) ? LinearAccessBit : 0,
|
||||
|
||||
Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0) | AlignedBit,//(int(MatrixType::Flags)&int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit),
|
||||
CoeffReadCost = NumTraits<Scalar>::MulCost + MatrixType::CoeffReadCost + DiagonalType::DiagonalVectorType::CoeffReadCost
|
||||
Flags = ((HereditaryBits|_LinearAccessMask|AlignedBit) & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0),//(int(MatrixType::Flags)&int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit),
|
||||
Cost0 = EIGEN_ADD_COST(NumTraits<Scalar>::MulCost, MatrixType::CoeffReadCost),
|
||||
CoeffReadCost = EIGEN_ADD_COST(Cost0,DiagonalType::DiagonalVectorType::CoeffReadCost)
|
||||
};
|
||||
};
|
||||
}
|
||||
|
|
|
|||
|
|
@ -259,6 +259,47 @@ template<> struct functor_traits<scalar_boolean_or_op> {
|
|||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functors for comparison of two scalars
|
||||
* \todo Implement packet-comparisons
|
||||
*/
|
||||
template<typename Scalar, ComparisonName cmp> struct scalar_cmp_op;
|
||||
|
||||
template<typename Scalar, ComparisonName cmp>
|
||||
struct functor_traits<scalar_cmp_op<Scalar, cmp> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = false
|
||||
};
|
||||
};
|
||||
|
||||
template<ComparisonName Cmp, typename Scalar>
|
||||
struct result_of<scalar_cmp_op<Scalar, Cmp>(Scalar,Scalar)> {
|
||||
typedef bool type;
|
||||
};
|
||||
|
||||
|
||||
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_EQ> {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
|
||||
EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a==b;}
|
||||
};
|
||||
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_LT> {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
|
||||
EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<b;}
|
||||
};
|
||||
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_LE> {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
|
||||
EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<=b;}
|
||||
};
|
||||
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_UNORD> {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
|
||||
EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return !(a<=b || b<=a);}
|
||||
};
|
||||
template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_NEQ> {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
|
||||
EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a!=b;}
|
||||
};
|
||||
|
||||
// unary functors:
|
||||
|
||||
/** \internal
|
||||
|
|
|
|||
|
|
@ -257,7 +257,7 @@ template<typename Lhs, typename Rhs>
|
|||
class GeneralProduct<Lhs, Rhs, OuterProduct>
|
||||
: public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
|
||||
{
|
||||
template<typename T> struct IsRowMajor : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
|
||||
template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
|
||||
|
||||
public:
|
||||
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
|
||||
|
|
@ -281,22 +281,22 @@ class GeneralProduct<Lhs, Rhs, OuterProduct>
|
|||
|
||||
template<typename Dest>
|
||||
inline void evalTo(Dest& dest) const {
|
||||
internal::outer_product_selector_run(*this, dest, set(), IsRowMajor<Dest>());
|
||||
internal::outer_product_selector_run(*this, dest, set(), is_row_major<Dest>());
|
||||
}
|
||||
|
||||
template<typename Dest>
|
||||
inline void addTo(Dest& dest) const {
|
||||
internal::outer_product_selector_run(*this, dest, add(), IsRowMajor<Dest>());
|
||||
internal::outer_product_selector_run(*this, dest, add(), is_row_major<Dest>());
|
||||
}
|
||||
|
||||
template<typename Dest>
|
||||
inline void subTo(Dest& dest) const {
|
||||
internal::outer_product_selector_run(*this, dest, sub(), IsRowMajor<Dest>());
|
||||
internal::outer_product_selector_run(*this, dest, sub(), is_row_major<Dest>());
|
||||
}
|
||||
|
||||
template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
|
||||
{
|
||||
internal::outer_product_selector_run(*this, dest, adds(alpha), IsRowMajor<Dest>());
|
||||
internal::outer_product_selector_run(*this, dest, adds(alpha), is_row_major<Dest>());
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -123,7 +123,7 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
|
|||
return internal::ploadt<PacketScalar, LoadMode>(m_data + index * innerStride());
|
||||
}
|
||||
|
||||
inline MapBase(PointerType dataPtr) : m_data(dataPtr), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
|
||||
explicit inline MapBase(PointerType dataPtr) : m_data(dataPtr), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
checkSanity();
|
||||
|
|
@ -157,7 +157,7 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
|
|||
internal::inner_stride_at_compile_time<Derived>::ret==1),
|
||||
PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
|
||||
eigen_assert(EIGEN_IMPLIES(internal::traits<Derived>::Flags&AlignedBit, (size_t(m_data) % 16) == 0)
|
||||
&& "data is not aligned");
|
||||
&& "input pointer is not aligned on a 16 byte boundary");
|
||||
}
|
||||
|
||||
PointerType m_data;
|
||||
|
|
|
|||
|
|
@ -294,7 +294,7 @@ struct hypot_impl
|
|||
RealScalar _x = abs(x);
|
||||
RealScalar _y = abs(y);
|
||||
RealScalar p = (max)(_x, _y);
|
||||
if(p==RealScalar(0)) return 0;
|
||||
if(p==RealScalar(0)) return RealScalar(0);
|
||||
RealScalar q = (min)(_x, _y);
|
||||
RealScalar qp = q/p;
|
||||
return p * sqrt(RealScalar(1) + qp*qp);
|
||||
|
|
|
|||
|
|
@ -211,6 +211,21 @@ class Matrix
|
|||
: Base(internal::constructor_without_unaligned_array_assert())
|
||||
{ Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }
|
||||
|
||||
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
|
||||
Matrix(Matrix&& other)
|
||||
: Base(std::move(other))
|
||||
{
|
||||
Base::_check_template_params();
|
||||
if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic)
|
||||
Base::_set_noalias(other);
|
||||
}
|
||||
Matrix& operator=(Matrix&& other)
|
||||
{
|
||||
other.swap(*this);
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
|
||||
*
|
||||
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
|
||||
|
|
|
|||
|
|
@ -159,13 +159,11 @@ template<typename Derived> class MatrixBase
|
|||
template<typename OtherDerived>
|
||||
Derived& operator=(const ReturnByValue<OtherDerived>& other);
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||
Derived& lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other);
|
||||
|
||||
template<typename MatrixPower, typename Lhs, typename Rhs>
|
||||
Derived& lazyAssign(const MatrixPowerProduct<MatrixPower, Lhs,Rhs>& other);
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator+=(const MatrixBase<OtherDerived>& other);
|
||||
|
|
@ -442,6 +440,15 @@ template<typename Derived> class MatrixBase
|
|||
template<typename OtherScalar>
|
||||
void applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j);
|
||||
|
||||
///////// SparseCore module /////////
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE const typename SparseMatrixBase<OtherDerived>::template CwiseProductDenseReturnType<Derived>::Type
|
||||
cwiseProduct(const SparseMatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return other.cwiseProduct(derived());
|
||||
}
|
||||
|
||||
///////// MatrixFunctions module /////////
|
||||
|
||||
typedef typename internal::stem_function<Scalar>::type StemFunction;
|
||||
|
|
|
|||
|
|
@ -250,6 +250,35 @@ class PermutationBase : public EigenBase<Derived>
|
|||
template<typename Other> friend
|
||||
inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other, const PermutationBase& perm)
|
||||
{ return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); }
|
||||
|
||||
/** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the permutation.
|
||||
*
|
||||
* This function is O(\c n) procedure allocating a buffer of \c n booleans.
|
||||
*/
|
||||
Index determinant() const
|
||||
{
|
||||
Index res = 1;
|
||||
Index n = size();
|
||||
Matrix<bool,RowsAtCompileTime,1,0,MaxRowsAtCompileTime> mask(n);
|
||||
mask.fill(false);
|
||||
Index r = 0;
|
||||
while(r < n)
|
||||
{
|
||||
// search for the next seed
|
||||
while(r<n && mask[r]) r++;
|
||||
if(r>=n)
|
||||
break;
|
||||
// we got one, let's follow it until we are back to the seed
|
||||
Index k0 = r++;
|
||||
mask.coeffRef(k0) = true;
|
||||
for(Index k=indices().coeff(k0); k!=k0; k=indices().coeff(k))
|
||||
{
|
||||
mask.coeffRef(k) = true;
|
||||
res = -res;
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
|
|
|
|||
|
|
@ -437,6 +437,36 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
|||
}
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
|
||||
PlainObjectBase(PlainObjectBase&& other)
|
||||
: m_storage( std::move(other.m_storage) )
|
||||
{
|
||||
}
|
||||
|
||||
PlainObjectBase& operator=(PlainObjectBase&& other)
|
||||
{
|
||||
using std::swap;
|
||||
swap(m_storage, other.m_storage);
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** Copy constructor */
|
||||
EIGEN_STRONG_INLINE PlainObjectBase(const PlainObjectBase& other)
|
||||
: m_storage()
|
||||
{
|
||||
_check_template_params();
|
||||
lazyAssign(other);
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase<OtherDerived> &other)
|
||||
: m_storage()
|
||||
{
|
||||
_check_template_params();
|
||||
lazyAssign(other);
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE PlainObjectBase(Index a_size, Index nbRows, Index nbCols)
|
||||
: m_storage(a_size, nbRows, nbCols)
|
||||
{
|
||||
|
|
@ -573,6 +603,8 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
|||
: (rows() == other.rows() && cols() == other.cols())))
|
||||
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(other);
|
||||
if(this->size()==0)
|
||||
resizeLike(other);
|
||||
#else
|
||||
resizeLike(other);
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -247,8 +247,9 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
|
|||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling>
|
||||
// NOTE: for SliceVectorizedTraversal we simply bypass unrolling
|
||||
template<typename Func, typename Derived, int Unrolling>
|
||||
struct redux_impl<Func, Derived, SliceVectorizedTraversal, Unrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename packet_traits<Scalar>::type PacketScalar;
|
||||
|
|
|
|||
|
|
@ -108,7 +108,8 @@ struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
|
|||
OuterStrideMatch = Derived::IsVectorAtCompileTime
|
||||
|| int(StrideType::OuterStrideAtCompileTime)==int(Dynamic) || int(StrideType::OuterStrideAtCompileTime)==int(Derived::OuterStrideAtCompileTime),
|
||||
AlignmentMatch = (_Options!=Aligned) || ((PlainObjectType::Flags&AlignedBit)==0) || ((traits<Derived>::Flags&AlignedBit)==AlignedBit),
|
||||
MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch
|
||||
ScalarTypeMatch = internal::is_same<typename PlainObjectType::Scalar, typename Derived::Scalar>::value,
|
||||
MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch && ScalarTypeMatch
|
||||
};
|
||||
typedef typename internal::conditional<MatchAtCompileTime,internal::true_type,internal::false_type>::type type;
|
||||
};
|
||||
|
|
@ -187,9 +188,11 @@ protected:
|
|||
template<typename PlainObjectType, int Options, typename StrideType> class Ref
|
||||
: public RefBase<Ref<PlainObjectType, Options, StrideType> >
|
||||
{
|
||||
private:
|
||||
typedef internal::traits<Ref> Traits;
|
||||
template<typename Derived>
|
||||
inline Ref(const PlainObjectBase<Derived>& expr);
|
||||
inline Ref(const PlainObjectBase<Derived>& expr,
|
||||
typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0);
|
||||
public:
|
||||
|
||||
typedef RefBase<Ref> Base;
|
||||
|
|
@ -198,13 +201,15 @@ template<typename PlainObjectType, int Options, typename StrideType> class Ref
|
|||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename Derived>
|
||||
inline Ref(PlainObjectBase<Derived>& expr)
|
||||
inline Ref(PlainObjectBase<Derived>& expr,
|
||||
typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(static_cast<bool>(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
|
||||
Base::construct(expr.derived());
|
||||
}
|
||||
template<typename Derived>
|
||||
inline Ref(const DenseBase<Derived>& expr)
|
||||
inline Ref(const DenseBase<Derived>& expr,
|
||||
typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0)
|
||||
#else
|
||||
template<typename Derived>
|
||||
inline Ref(DenseBase<Derived>& expr)
|
||||
|
|
@ -231,13 +236,23 @@ template<typename TPlainObjectType, int Options, typename StrideType> class Ref<
|
|||
EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
|
||||
|
||||
template<typename Derived>
|
||||
inline Ref(const DenseBase<Derived>& expr)
|
||||
inline Ref(const DenseBase<Derived>& expr,
|
||||
typename internal::enable_if<bool(Traits::template match<Derived>::ScalarTypeMatch),Derived>::type* = 0)
|
||||
{
|
||||
// std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << "," << match_helper<Derived>::InnerStrideMatch << "\n";
|
||||
// std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n";
|
||||
// std::cout << int(StrideType::InnerStrideAtCompileTime) << " - " << int(Derived::InnerStrideAtCompileTime) << "\n";
|
||||
construct(expr.derived(), typename Traits::template match<Derived>::type());
|
||||
}
|
||||
|
||||
inline Ref(const Ref& other) : Base(other) {
|
||||
// copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy
|
||||
}
|
||||
|
||||
template<typename OtherRef>
|
||||
inline Ref(const RefBase<OtherRef>& other) {
|
||||
construct(other.derived(), typename Traits::template match<OtherRef>::type());
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
|
|
|
|||
|
|
@ -72,6 +72,8 @@ template<typename Derived> class ReturnByValue
|
|||
const Unusable& coeff(Index,Index) const { return *reinterpret_cast<const Unusable*>(this); }
|
||||
Unusable& coeffRef(Index) { return *reinterpret_cast<Unusable*>(this); }
|
||||
Unusable& coeffRef(Index,Index) { return *reinterpret_cast<Unusable*>(this); }
|
||||
template<int LoadMode> Unusable& packet(Index) const;
|
||||
template<int LoadMode> Unusable& packet(Index, Index) const;
|
||||
#endif
|
||||
};
|
||||
|
||||
|
|
@ -83,6 +85,15 @@ Derived& DenseBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
|
|||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& DenseBase<Derived>::lazyAssign(const ReturnByValue<OtherDerived>& other)
|
||||
{
|
||||
other.evalTo(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_RETURNBYVALUE_H
|
||||
|
|
|
|||
|
|
@ -180,15 +180,9 @@ inline Derived& DenseBase<Derived>::operator*=(const Scalar& other)
|
|||
template<typename Derived>
|
||||
inline Derived& DenseBase<Derived>::operator/=(const Scalar& other)
|
||||
{
|
||||
typedef typename internal::conditional<NumTraits<Scalar>::IsInteger,
|
||||
internal::scalar_quotient_op<Scalar>,
|
||||
internal::scalar_product_op<Scalar> >::type BinOp;
|
||||
typedef typename Derived::PlainObject PlainObject;
|
||||
SelfCwiseBinaryOp<BinOp, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
|
||||
Scalar actual_other;
|
||||
if(NumTraits<Scalar>::IsInteger) actual_other = other;
|
||||
else actual_other = Scalar(1)/other;
|
||||
tmp = PlainObject::Constant(rows(),cols(), actual_other);
|
||||
SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
|
||||
tmp = PlainObject::Constant(rows(),cols(), other);
|
||||
return derived();
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -384,6 +384,7 @@ template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
|
|||
a_lo = vget_low_s32(a);
|
||||
a_hi = vget_high_s32(a);
|
||||
max = vpmax_s32(a_lo, a_hi);
|
||||
max = vpmax_s32(max, max);
|
||||
|
||||
return vget_lane_s32(max, 0);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -126,7 +126,7 @@ Packet4f pexp<Packet4f>(const Packet4f& _x)
|
|||
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
|
||||
|
||||
Packet4f tmp = _mm_setzero_ps(), fx;
|
||||
Packet4f tmp, fx;
|
||||
Packet4i emm0;
|
||||
|
||||
// clamp x
|
||||
|
|
@ -195,7 +195,7 @@ Packet2d pexp<Packet2d>(const Packet2d& _x)
|
|||
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
|
||||
static const __m128i p4i_1023_0 = _mm_setr_epi32(1023, 1023, 0, 0);
|
||||
|
||||
Packet2d tmp = _mm_setzero_pd(), fx;
|
||||
Packet2d tmp, fx;
|
||||
Packet4i emm0;
|
||||
|
||||
// clamp x
|
||||
|
|
@ -279,7 +279,7 @@ Packet4f psin<Packet4f>(const Packet4f& _x)
|
|||
_EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
|
||||
|
||||
Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
|
||||
Packet4f xmm1, xmm2, xmm3, sign_bit, y;
|
||||
|
||||
Packet4i emm0, emm2;
|
||||
sign_bit = x;
|
||||
|
|
@ -378,7 +378,7 @@ Packet4f pcos<Packet4f>(const Packet4f& _x)
|
|||
_EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
|
||||
_EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
|
||||
|
||||
Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
|
||||
Packet4f xmm1, xmm2, xmm3, y;
|
||||
Packet4i emm0, emm2;
|
||||
|
||||
x = pabs(x);
|
||||
|
|
|
|||
|
|
@ -134,7 +134,7 @@ class CoeffBasedProduct
|
|||
};
|
||||
|
||||
typedef internal::product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
|
||||
Unroll ? (InnerSize==0 ? 0 : InnerSize-1) : Dynamic,
|
||||
Unroll ? InnerSize : Dynamic,
|
||||
_LhsNested, _RhsNested, Scalar> ScalarCoeffImpl;
|
||||
|
||||
typedef CoeffBasedProduct<LhsNested,RhsNested,NestByRefBit> LazyCoeffBasedProductType;
|
||||
|
|
@ -185,7 +185,7 @@ class CoeffBasedProduct
|
|||
{
|
||||
PacketScalar res;
|
||||
internal::product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
|
||||
Unroll ? (InnerSize==0 ? 0 : InnerSize-1) : Dynamic,
|
||||
Unroll ? InnerSize : Dynamic,
|
||||
_LhsNested, _RhsNested, PacketScalar, LoadMode>
|
||||
::run(row, col, m_lhs, m_rhs, res);
|
||||
return res;
|
||||
|
|
@ -243,7 +243,17 @@ struct product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
|
|||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
{
|
||||
product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, res);
|
||||
res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
|
||||
res += lhs.coeff(row, UnrollingIndex-1) * rhs.coeff(UnrollingIndex-1, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct product_coeff_impl<DefaultTraversal, 1, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
{
|
||||
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
@ -251,9 +261,9 @@ template<typename Lhs, typename Rhs, typename RetScalar>
|
|||
struct product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, RetScalar &res)
|
||||
{
|
||||
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
|
||||
res = RetScalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
@ -293,6 +303,16 @@ struct product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
|
|||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct product_coeff_impl<InnerVectorizedTraversal, 0, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, RetScalar &res)
|
||||
{
|
||||
res = 0;
|
||||
}
|
||||
};
|
||||
|
||||
template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
|
|
@ -302,8 +322,7 @@ struct product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, Re
|
|||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
{
|
||||
Packet pres;
|
||||
product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
|
||||
product_coeff_impl<DefaultTraversal,UnrollingIndex,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, res);
|
||||
product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
|
||||
res = predux(pres);
|
||||
}
|
||||
};
|
||||
|
|
@ -371,7 +390,7 @@ struct product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
|
|||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
|
||||
{
|
||||
product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
|
||||
res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
|
||||
res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex-1)), rhs.template packet<LoadMode>(UnrollingIndex-1, col), res);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
@ -382,12 +401,12 @@ struct product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
|
|||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
|
||||
{
|
||||
product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
|
||||
res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
|
||||
res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex-1), pset1<Packet>(rhs.coeff(UnrollingIndex-1, col)), res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
||||
struct product_packet_impl<RowMajor, 1, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
|
||||
|
|
@ -397,7 +416,7 @@ struct product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
|||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
||||
struct product_packet_impl<ColMajor, 1, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
|
||||
|
|
@ -406,16 +425,35 @@ struct product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
|||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Packet &res)
|
||||
{
|
||||
res = pset1<Packet>(0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Packet &res)
|
||||
{
|
||||
res = pset1<Packet>(0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
|
||||
struct product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
|
||||
{
|
||||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
|
||||
{
|
||||
eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
|
||||
res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
|
||||
for(Index i = 1; i < lhs.cols(); ++i)
|
||||
res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
|
||||
res = pset1<Packet>(0);
|
||||
for(Index i = 0; i < lhs.cols(); ++i)
|
||||
res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
@ -425,10 +463,9 @@ struct product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
|
|||
typedef typename Lhs::Index Index;
|
||||
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
|
||||
{
|
||||
eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
|
||||
res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
|
||||
for(Index i = 1; i < lhs.cols(); ++i)
|
||||
res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
|
||||
res = pset1<Packet>(0);
|
||||
for(Index i = 0; i < lhs.cols(); ++i)
|
||||
res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -125,19 +125,22 @@ void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpos
|
|||
if(transpose)
|
||||
std::swap(rows,cols);
|
||||
|
||||
Index blockCols = (cols / threads) & ~Index(0x3);
|
||||
Index blockRows = (rows / threads) & ~Index(0x7);
|
||||
|
||||
GemmParallelInfo<Index>* info = new GemmParallelInfo<Index>[threads];
|
||||
|
||||
#pragma omp parallel for schedule(static,1) num_threads(threads)
|
||||
for(Index i=0; i<threads; ++i)
|
||||
#pragma omp parallel num_threads(threads)
|
||||
{
|
||||
Index i = omp_get_thread_num();
|
||||
// Note that the actual number of threads might be lower than the number of request ones.
|
||||
Index actual_threads = omp_get_num_threads();
|
||||
|
||||
Index blockCols = (cols / actual_threads) & ~Index(0x3);
|
||||
Index blockRows = (rows / actual_threads) & ~Index(0x7);
|
||||
|
||||
Index r0 = i*blockRows;
|
||||
Index actualBlockRows = (i+1==threads) ? rows-r0 : blockRows;
|
||||
Index actualBlockRows = (i+1==actual_threads) ? rows-r0 : blockRows;
|
||||
|
||||
Index c0 = i*blockCols;
|
||||
Index actualBlockCols = (i+1==threads) ? cols-c0 : blockCols;
|
||||
Index actualBlockCols = (i+1==actual_threads) ? cols-c0 : blockCols;
|
||||
|
||||
info[i].rhs_start = c0;
|
||||
info[i].rhs_length = actualBlockCols;
|
||||
|
|
|
|||
|
|
@ -109,7 +109,7 @@ struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,true, \
|
|||
/* Non-square case - doesn't fit to MKL ?TRMM. Fall to default triangular product or call MKL ?GEMM*/ \
|
||||
if (rows != depth) { \
|
||||
\
|
||||
int nthr = mkl_domain_get_max_threads(MKL_BLAS); \
|
||||
int nthr = mkl_domain_get_max_threads(EIGEN_MKL_DOMAIN_BLAS); \
|
||||
\
|
||||
if (((nthr==1) && (((std::max)(rows,depth)-diagSize)/(double)diagSize < 0.5))) { \
|
||||
/* Most likely no benefit to call TRMM or GEMM from MKL*/ \
|
||||
|
|
@ -223,7 +223,7 @@ struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,false, \
|
|||
/* Non-square case - doesn't fit to MKL ?TRMM. Fall to default triangular product or call MKL ?GEMM*/ \
|
||||
if (cols != depth) { \
|
||||
\
|
||||
int nthr = mkl_domain_get_max_threads(MKL_BLAS); \
|
||||
int nthr = mkl_domain_get_max_threads(EIGEN_MKL_DOMAIN_BLAS); \
|
||||
\
|
||||
if ((nthr==1) && (((std::max)(cols,depth)-diagSize)/(double)diagSize < 0.5)) { \
|
||||
/* Most likely no benefit to call TRMM or GEMM from MKL*/ \
|
||||
|
|
|
|||
|
|
@ -302,9 +302,12 @@ EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conj
|
|||
for (Index i=0; i<actual_mc; ++i)
|
||||
r[i] -= a[i] * b;
|
||||
}
|
||||
Scalar b = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(rhs(j,j));
|
||||
for (Index i=0; i<actual_mc; ++i)
|
||||
r[i] *= b;
|
||||
if((Mode & UnitDiag)==0)
|
||||
{
|
||||
Scalar b = conj(rhs(j,j));
|
||||
for (Index i=0; i<actual_mc; ++i)
|
||||
r[i] /= b;
|
||||
}
|
||||
}
|
||||
|
||||
// pack the just computed part of lhs to A
|
||||
|
|
|
|||
|
|
@ -433,6 +433,19 @@ struct MatrixXpr {};
|
|||
/** The type used to identify an array expression */
|
||||
struct ArrayXpr {};
|
||||
|
||||
namespace internal {
|
||||
/** \internal
|
||||
* Constants for comparison functors
|
||||
*/
|
||||
enum ComparisonName {
|
||||
cmp_EQ = 0,
|
||||
cmp_LT = 1,
|
||||
cmp_LE = 2,
|
||||
cmp_UNORD = 3,
|
||||
cmp_NEQ = 4
|
||||
};
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CONSTANTS_H
|
||||
|
|
|
|||
|
|
@ -235,6 +235,9 @@ template<typename Scalar> class Rotation2D;
|
|||
template<typename Scalar> class AngleAxis;
|
||||
template<typename Scalar,int Dim> class Translation;
|
||||
|
||||
// Sparse module:
|
||||
template<typename Derived> class SparseMatrixBase;
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
template<typename Derived, int _Dim> class eigen2_RotationBase;
|
||||
template<typename Lhs, typename Rhs> class eigen2_Cross;
|
||||
|
|
|
|||
|
|
@ -76,6 +76,38 @@
|
|||
#include <mkl_lapacke.h>
|
||||
#define EIGEN_MKL_VML_THRESHOLD 128
|
||||
|
||||
/* MKL_DOMAIN_BLAS, etc are defined only in 10.3 update 7 */
|
||||
/* MKL_BLAS, etc are not defined in 11.2 */
|
||||
#ifdef MKL_DOMAIN_ALL
|
||||
#define EIGEN_MKL_DOMAIN_ALL MKL_DOMAIN_ALL
|
||||
#else
|
||||
#define EIGEN_MKL_DOMAIN_ALL MKL_ALL
|
||||
#endif
|
||||
|
||||
#ifdef MKL_DOMAIN_BLAS
|
||||
#define EIGEN_MKL_DOMAIN_BLAS MKL_DOMAIN_BLAS
|
||||
#else
|
||||
#define EIGEN_MKL_DOMAIN_BLAS MKL_BLAS
|
||||
#endif
|
||||
|
||||
#ifdef MKL_DOMAIN_FFT
|
||||
#define EIGEN_MKL_DOMAIN_FFT MKL_DOMAIN_FFT
|
||||
#else
|
||||
#define EIGEN_MKL_DOMAIN_FFT MKL_FFT
|
||||
#endif
|
||||
|
||||
#ifdef MKL_DOMAIN_VML
|
||||
#define EIGEN_MKL_DOMAIN_VML MKL_DOMAIN_VML
|
||||
#else
|
||||
#define EIGEN_MKL_DOMAIN_VML MKL_VML
|
||||
#endif
|
||||
|
||||
#ifdef MKL_DOMAIN_PARDISO
|
||||
#define EIGEN_MKL_DOMAIN_PARDISO MKL_DOMAIN_PARDISO
|
||||
#else
|
||||
#define EIGEN_MKL_DOMAIN_PARDISO MKL_PARDISO
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
typedef std::complex<double> dcomplex;
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@
|
|||
|
||||
#define EIGEN_WORLD_VERSION 3
|
||||
#define EIGEN_MAJOR_VERSION 2
|
||||
#define EIGEN_MINOR_VERSION 4
|
||||
#define EIGEN_MINOR_VERSION 7
|
||||
|
||||
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
|
||||
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
|
||||
|
|
@ -96,6 +96,20 @@
|
|||
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE std::ptrdiff_t
|
||||
#endif
|
||||
|
||||
// A Clang feature extension to determine compiler features.
|
||||
// We use it to determine 'cxx_rvalue_references'
|
||||
#ifndef __has_feature
|
||||
# define __has_feature(x) 0
|
||||
#endif
|
||||
|
||||
// Do we support r-value references?
|
||||
#if (__has_feature(cxx_rvalue_references) || \
|
||||
defined(__GXX_EXPERIMENTAL_CXX0X__) || \
|
||||
(defined(_MSC_VER) && _MSC_VER >= 1600))
|
||||
#define EIGEN_HAVE_RVALUE_REFERENCES
|
||||
#endif
|
||||
|
||||
|
||||
// Cross compiler wrapper around LLVM's __has_builtin
|
||||
#ifdef __has_builtin
|
||||
# define EIGEN_HAS_BUILTIN(x) __has_builtin(x)
|
||||
|
|
@ -278,6 +292,7 @@ namespace Eigen {
|
|||
#error Please tell me what is the equivalent of __attribute__((aligned(n))) for your compiler
|
||||
#endif
|
||||
|
||||
#define EIGEN_ALIGN8 EIGEN_ALIGN_TO_BOUNDARY(8)
|
||||
#define EIGEN_ALIGN16 EIGEN_ALIGN_TO_BOUNDARY(16)
|
||||
|
||||
#if EIGEN_ALIGN_STATICALLY
|
||||
|
|
@ -332,8 +347,11 @@ namespace Eigen {
|
|||
}
|
||||
#endif
|
||||
|
||||
#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
|
||||
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived)
|
||||
/** \internal
|
||||
* \brief Macro to manually inherit assignment operators.
|
||||
* This is necessary, because the implicitly defined assignment operator gets deleted when a custom operator= is defined.
|
||||
*/
|
||||
#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived)
|
||||
|
||||
/**
|
||||
* Just a side note. Commenting within defines works only by documenting
|
||||
|
|
@ -405,6 +423,8 @@ namespace Eigen {
|
|||
#define EIGEN_SIZE_MAX(a,b) (((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \
|
||||
: ((int)a >= (int)b) ? (int)a : (int)b)
|
||||
|
||||
#define EIGEN_ADD_COST(a,b) int(a)==Dynamic || int(b)==Dynamic ? Dynamic : int(a)+int(b)
|
||||
|
||||
#define EIGEN_LOGICAL_XOR(a,b) (((a) || (b)) && !((a) && (b)))
|
||||
|
||||
#define EIGEN_IMPLIES(a,b) (!(a) || (b))
|
||||
|
|
|
|||
|
|
@ -523,7 +523,7 @@ template<typename T> struct smart_copy_helper<T,false> {
|
|||
// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
|
||||
// to the appropriate stack allocation function
|
||||
#ifndef EIGEN_ALLOCA
|
||||
#if (defined __linux__)
|
||||
#if (defined __linux__) || (defined __APPLE__) || (defined alloca)
|
||||
#define EIGEN_ALLOCA alloca
|
||||
#elif defined(_MSC_VER)
|
||||
#define EIGEN_ALLOCA _alloca
|
||||
|
|
|
|||
|
|
@ -366,17 +366,17 @@ struct dense_xpr_base<Derived, ArrayXpr>
|
|||
|
||||
/** \internal Helper base class to add a scalar multiple operator
|
||||
* overloads for complex types */
|
||||
template<typename Derived,typename Scalar,typename OtherScalar,
|
||||
template<typename Derived, typename Scalar, typename OtherScalar, typename BaseType,
|
||||
bool EnableIt = !is_same<Scalar,OtherScalar>::value >
|
||||
struct special_scalar_op_base : public DenseCoeffsBase<Derived>
|
||||
struct special_scalar_op_base : public BaseType
|
||||
{
|
||||
// dummy operator* so that the
|
||||
// "using special_scalar_op_base::operator*" compiles
|
||||
void operator*() const;
|
||||
};
|
||||
|
||||
template<typename Derived,typename Scalar,typename OtherScalar>
|
||||
struct special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public DenseCoeffsBase<Derived>
|
||||
template<typename Derived,typename Scalar,typename OtherScalar, typename BaseType>
|
||||
struct special_scalar_op_base<Derived,Scalar,OtherScalar,BaseType,true> : public BaseType
|
||||
{
|
||||
const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
|
||||
operator*(const OtherScalar& scalar) const
|
||||
|
|
|
|||
|
|
@ -234,6 +234,12 @@ template<typename _MatrixType> class ComplexEigenSolver
|
|||
}
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
EigenvectorType m_eivec;
|
||||
EigenvalueType m_eivalues;
|
||||
ComplexSchur<MatrixType> m_schur;
|
||||
|
|
@ -251,6 +257,8 @@ template<typename MatrixType>
|
|||
ComplexEigenSolver<MatrixType>&
|
||||
ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
// this code is inspired from Jampack
|
||||
eigen_assert(matrix.cols() == matrix.rows());
|
||||
|
||||
|
|
|
|||
|
|
@ -298,6 +298,13 @@ template<typename _MatrixType> class EigenSolver
|
|||
void doComputeEigenvectors();
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
|
||||
}
|
||||
|
||||
MatrixType m_eivec;
|
||||
EigenvalueType m_eivalues;
|
||||
bool m_isInitialized;
|
||||
|
|
@ -364,6 +371,8 @@ template<typename MatrixType>
|
|||
EigenSolver<MatrixType>&
|
||||
EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
eigen_assert(matrix.cols() == matrix.rows());
|
||||
|
|
|
|||
|
|
@ -263,6 +263,13 @@ template<typename _MatrixType> class GeneralizedEigenSolver
|
|||
}
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
|
||||
}
|
||||
|
||||
MatrixType m_eivec;
|
||||
ComplexVectorType m_alphas;
|
||||
VectorType m_betas;
|
||||
|
|
@ -290,6 +297,8 @@ template<typename MatrixType>
|
|||
GeneralizedEigenSolver<MatrixType>&
|
||||
GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
|
||||
|
|
|
|||
|
|
@ -240,10 +240,10 @@ namespace Eigen {
|
|||
m_S.coeffRef(i,j) = Scalar(0.0);
|
||||
m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
|
||||
m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
|
||||
// update Q
|
||||
if (m_computeQZ)
|
||||
m_Q.applyOnTheRight(i-1,i,G);
|
||||
}
|
||||
// update Q
|
||||
if (m_computeQZ)
|
||||
m_Q.applyOnTheRight(i-1,i,G);
|
||||
// kill T(i,i-1)
|
||||
if(m_T.coeff(i,i-1)!=Scalar(0))
|
||||
{
|
||||
|
|
@ -251,10 +251,10 @@ namespace Eigen {
|
|||
m_T.coeffRef(i,i-1) = Scalar(0.0);
|
||||
m_S.applyOnTheRight(i,i-1,G);
|
||||
m_T.topRows(i).applyOnTheRight(i,i-1,G);
|
||||
// update Z
|
||||
if (m_computeQZ)
|
||||
m_Z.applyOnTheLeft(i,i-1,G.adjoint());
|
||||
}
|
||||
// update Z
|
||||
if (m_computeQZ)
|
||||
m_Z.applyOnTheLeft(i,i-1,G.adjoint());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -234,7 +234,7 @@ template<typename _MatrixType> class RealSchur
|
|||
typedef Matrix<Scalar,3,1> Vector3s;
|
||||
|
||||
Scalar computeNormOfT();
|
||||
Index findSmallSubdiagEntry(Index iu, const Scalar& norm);
|
||||
Index findSmallSubdiagEntry(Index iu);
|
||||
void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
|
||||
void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
|
||||
void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
|
||||
|
|
@ -286,7 +286,7 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMa
|
|||
{
|
||||
while (iu >= 0)
|
||||
{
|
||||
Index il = findSmallSubdiagEntry(iu, norm);
|
||||
Index il = findSmallSubdiagEntry(iu);
|
||||
|
||||
// Check for convergence
|
||||
if (il == iu) // One root found
|
||||
|
|
@ -343,16 +343,14 @@ inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
|
|||
|
||||
/** \internal Look for single small sub-diagonal element and returns its index */
|
||||
template<typename MatrixType>
|
||||
inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& norm)
|
||||
inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
|
||||
{
|
||||
using std::abs;
|
||||
Index res = iu;
|
||||
while (res > 0)
|
||||
{
|
||||
Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
|
||||
if (s == 0.0)
|
||||
s = norm;
|
||||
if (abs(m_matT.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
|
||||
if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
|
||||
break;
|
||||
res--;
|
||||
}
|
||||
|
|
@ -457,9 +455,7 @@ inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const V
|
|||
const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
|
||||
const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
|
||||
if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -80,6 +80,8 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
|||
/** \brief Scalar type for matrices of type \p _MatrixType. */
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
|
||||
|
||||
/** \brief Real scalar type for \p _MatrixType.
|
||||
*
|
||||
|
|
@ -225,7 +227,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
|||
*
|
||||
* \sa eigenvalues()
|
||||
*/
|
||||
const MatrixType& eigenvectors() const
|
||||
const EigenvectorsType& eigenvectors() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
|
||||
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
||||
|
|
@ -351,7 +353,12 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
|||
#endif // EIGEN2_SUPPORT
|
||||
|
||||
protected:
|
||||
MatrixType m_eivec;
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
EigenvectorsType m_eivec;
|
||||
RealVectorType m_eivalues;
|
||||
typename TridiagonalizationType::SubDiagonalType m_subdiag;
|
||||
ComputationInfo m_info;
|
||||
|
|
@ -376,7 +383,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
|||
* "implicit symmetric QR step with Wilkinson shift"
|
||||
*/
|
||||
namespace internal {
|
||||
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
|
||||
template<typename RealScalar, typename Scalar, typename Index>
|
||||
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
|
||||
}
|
||||
|
||||
|
|
@ -384,6 +391,8 @@ template<typename MatrixType>
|
|||
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
||||
::compute(const MatrixType& matrix, int options)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
using std::abs;
|
||||
eigen_assert(matrix.cols() == matrix.rows());
|
||||
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
||||
|
|
@ -406,7 +415,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
|||
|
||||
// declare some aliases
|
||||
RealVectorType& diag = m_eivalues;
|
||||
MatrixType& mat = m_eivec;
|
||||
EigenvectorsType& mat = m_eivec;
|
||||
|
||||
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
||||
mat = matrix.template triangularView<Lower>();
|
||||
|
|
@ -442,7 +451,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
|||
while (start>0 && m_subdiag[start-1]!=0)
|
||||
start--;
|
||||
|
||||
internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
|
||||
internal::tridiagonal_qr_step(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
|
||||
}
|
||||
|
||||
if (iter <= m_maxIterations * n)
|
||||
|
|
@ -490,7 +499,13 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
|||
typedef typename SolverType::MatrixType MatrixType;
|
||||
typedef typename SolverType::RealVectorType VectorType;
|
||||
typedef typename SolverType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename SolverType::EigenvectorsType EigenvectorsType;
|
||||
|
||||
/** \internal
|
||||
* Computes the roots of the characteristic polynomial of \a m.
|
||||
* For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
|
||||
*/
|
||||
static inline void computeRoots(const MatrixType& m, VectorType& roots)
|
||||
{
|
||||
using std::sqrt;
|
||||
|
|
@ -510,158 +525,123 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
|||
// Construct the parameters used in classifying the roots of the equation
|
||||
// and in solving the equation for the roots in closed form.
|
||||
Scalar c2_over_3 = c2*s_inv3;
|
||||
Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
|
||||
if (a_over_3 > Scalar(0))
|
||||
Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
|
||||
if(a_over_3<Scalar(0))
|
||||
a_over_3 = Scalar(0);
|
||||
|
||||
Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
|
||||
|
||||
Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
|
||||
if (q > Scalar(0))
|
||||
Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
|
||||
if(q<Scalar(0))
|
||||
q = Scalar(0);
|
||||
|
||||
// Compute the eigenvalues by solving for the roots of the polynomial.
|
||||
Scalar rho = sqrt(-a_over_3);
|
||||
Scalar theta = atan2(sqrt(-q),half_b)*s_inv3;
|
||||
Scalar rho = sqrt(a_over_3);
|
||||
Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
|
||||
Scalar cos_theta = cos(theta);
|
||||
Scalar sin_theta = sin(theta);
|
||||
roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
|
||||
roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
|
||||
roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
|
||||
|
||||
// Sort in increasing order.
|
||||
if (roots(0) >= roots(1))
|
||||
std::swap(roots(0),roots(1));
|
||||
if (roots(1) >= roots(2))
|
||||
{
|
||||
std::swap(roots(1),roots(2));
|
||||
if (roots(0) >= roots(1))
|
||||
std::swap(roots(0),roots(1));
|
||||
}
|
||||
// roots are already sorted, since cos is monotonically decreasing on [0, pi]
|
||||
roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
|
||||
roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
|
||||
roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
|
||||
}
|
||||
|
||||
|
||||
static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
|
||||
{
|
||||
using std::abs;
|
||||
Index i0;
|
||||
// Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
|
||||
mat.diagonal().cwiseAbs().maxCoeff(&i0);
|
||||
// mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
|
||||
// so let's save it:
|
||||
representative = mat.col(i0);
|
||||
Scalar n0, n1;
|
||||
VectorType c0, c1;
|
||||
n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
|
||||
n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
|
||||
if(n0>n1) res = c0/std::sqrt(n0);
|
||||
else res = c1/std::sqrt(n1);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline void run(SolverType& solver, const MatrixType& mat, int options)
|
||||
{
|
||||
using std::sqrt;
|
||||
eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
|
||||
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
||||
&& (options&EigVecMask)!=EigVecMask
|
||||
&& "invalid option parameter");
|
||||
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
|
||||
|
||||
MatrixType& eivecs = solver.m_eivec;
|
||||
EigenvectorsType& eivecs = solver.m_eivec;
|
||||
VectorType& eivals = solver.m_eivalues;
|
||||
|
||||
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
||||
Scalar scale = mat.cwiseAbs().maxCoeff();
|
||||
MatrixType scaledMat = mat / scale;
|
||||
// Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
||||
Scalar shift = mat.trace() / Scalar(3);
|
||||
// TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
|
||||
MatrixType scaledMat = mat.template selfadjointView<Lower>();
|
||||
scaledMat.diagonal().array() -= shift;
|
||||
Scalar scale = scaledMat.cwiseAbs().maxCoeff();
|
||||
if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
|
||||
|
||||
// compute the eigenvalues
|
||||
computeRoots(scaledMat,eivals);
|
||||
|
||||
// compute the eigen vectors
|
||||
// compute the eigenvectors
|
||||
if(computeEigenvectors)
|
||||
{
|
||||
Scalar safeNorm2 = Eigen::NumTraits<Scalar>::epsilon();
|
||||
if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
|
||||
{
|
||||
// All three eigenvalues are numerically the same
|
||||
eivecs.setIdentity();
|
||||
}
|
||||
else
|
||||
{
|
||||
scaledMat = scaledMat.template selfadjointView<Lower>();
|
||||
MatrixType tmp;
|
||||
tmp = scaledMat;
|
||||
|
||||
// Compute the eigenvector of the most distinct eigenvalue
|
||||
Scalar d0 = eivals(2) - eivals(1);
|
||||
Scalar d1 = eivals(1) - eivals(0);
|
||||
int k = d0 > d1 ? 2 : 0;
|
||||
d0 = d0 > d1 ? d0 : d1;
|
||||
|
||||
tmp.diagonal().array () -= eivals(k);
|
||||
VectorType cross;
|
||||
Scalar n;
|
||||
n = (cross = tmp.row(0).cross(tmp.row(1))).squaredNorm();
|
||||
|
||||
if(n>safeNorm2)
|
||||
Index k(0), l(2);
|
||||
if(d0 > d1)
|
||||
{
|
||||
eivecs.col(k) = cross / sqrt(n);
|
||||
std::swap(k,l);
|
||||
d0 = d1;
|
||||
}
|
||||
|
||||
// Compute the eigenvector of index k
|
||||
{
|
||||
tmp.diagonal().array () -= eivals(k);
|
||||
// By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
|
||||
extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
|
||||
}
|
||||
|
||||
// Compute eigenvector of index l
|
||||
if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
|
||||
{
|
||||
// If d0 is too small, then the two other eigenvalues are numerically the same,
|
||||
// and thus we only have to ortho-normalize the near orthogonal vector we saved above.
|
||||
eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
|
||||
eivecs.col(l).normalize();
|
||||
}
|
||||
else
|
||||
{
|
||||
n = (cross = tmp.row(0).cross(tmp.row(2))).squaredNorm();
|
||||
tmp = scaledMat;
|
||||
tmp.diagonal().array () -= eivals(l);
|
||||
|
||||
if(n>safeNorm2)
|
||||
{
|
||||
eivecs.col(k) = cross / sqrt(n);
|
||||
}
|
||||
else
|
||||
{
|
||||
n = (cross = tmp.row(1).cross(tmp.row(2))).squaredNorm();
|
||||
|
||||
if(n>safeNorm2)
|
||||
{
|
||||
eivecs.col(k) = cross / sqrt(n);
|
||||
}
|
||||
else
|
||||
{
|
||||
// the input matrix and/or the eigenvaues probably contains some inf/NaN,
|
||||
// => exit
|
||||
// scale back to the original size.
|
||||
eivals *= scale;
|
||||
|
||||
solver.m_info = NumericalIssue;
|
||||
solver.m_isInitialized = true;
|
||||
solver.m_eigenvectorsOk = computeEigenvectors;
|
||||
return;
|
||||
}
|
||||
}
|
||||
VectorType dummy;
|
||||
extract_kernel(tmp, eivecs.col(l), dummy);
|
||||
}
|
||||
|
||||
tmp = scaledMat;
|
||||
tmp.diagonal().array() -= eivals(1);
|
||||
|
||||
if(d0<=Eigen::NumTraits<Scalar>::epsilon())
|
||||
{
|
||||
eivecs.col(1) = eivecs.col(k).unitOrthogonal();
|
||||
}
|
||||
else
|
||||
{
|
||||
n = (cross = eivecs.col(k).cross(tmp.row(0))).squaredNorm();
|
||||
if(n>safeNorm2)
|
||||
{
|
||||
eivecs.col(1) = cross / sqrt(n);
|
||||
}
|
||||
else
|
||||
{
|
||||
n = (cross = eivecs.col(k).cross(tmp.row(1))).squaredNorm();
|
||||
if(n>safeNorm2)
|
||||
eivecs.col(1) = cross / sqrt(n);
|
||||
else
|
||||
{
|
||||
n = (cross = eivecs.col(k).cross(tmp.row(2))).squaredNorm();
|
||||
if(n>safeNorm2)
|
||||
eivecs.col(1) = cross / sqrt(n);
|
||||
else
|
||||
{
|
||||
// we should never reach this point,
|
||||
// if so the last two eigenvalues are likely to be very close to each other
|
||||
eivecs.col(1) = eivecs.col(k).unitOrthogonal();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// make sure that eivecs[1] is orthogonal to eivecs[2]
|
||||
// FIXME: this step should not be needed
|
||||
Scalar d = eivecs.col(1).dot(eivecs.col(k));
|
||||
eivecs.col(1) = (eivecs.col(1) - d * eivecs.col(k)).normalized();
|
||||
}
|
||||
|
||||
eivecs.col(k==2 ? 0 : 2) = eivecs.col(k).cross(eivecs.col(1)).normalized();
|
||||
// Compute last eigenvector from the other two
|
||||
eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
|
||||
}
|
||||
}
|
||||
|
||||
// Rescale back to the original size.
|
||||
eivals *= scale;
|
||||
eivals.array() += shift;
|
||||
|
||||
solver.m_info = Success;
|
||||
solver.m_isInitialized = true;
|
||||
|
|
@ -675,11 +655,12 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2
|
|||
typedef typename SolverType::MatrixType MatrixType;
|
||||
typedef typename SolverType::RealVectorType VectorType;
|
||||
typedef typename SolverType::Scalar Scalar;
|
||||
typedef typename SolverType::EigenvectorsType EigenvectorsType;
|
||||
|
||||
static inline void computeRoots(const MatrixType& m, VectorType& roots)
|
||||
{
|
||||
using std::sqrt;
|
||||
const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*m(1,0)*m(1,0));
|
||||
const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
|
||||
const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
|
||||
roots(0) = t1 - t0;
|
||||
roots(1) = t1 + t0;
|
||||
|
|
@ -688,13 +669,15 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2
|
|||
static inline void run(SolverType& solver, const MatrixType& mat, int options)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
|
||||
eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
|
||||
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
||||
&& (options&EigVecMask)!=EigVecMask
|
||||
&& "invalid option parameter");
|
||||
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
|
||||
|
||||
MatrixType& eivecs = solver.m_eivec;
|
||||
EigenvectorsType& eivecs = solver.m_eivec;
|
||||
VectorType& eivals = solver.m_eivalues;
|
||||
|
||||
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
||||
|
|
@ -708,22 +691,29 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2
|
|||
// compute the eigen vectors
|
||||
if(computeEigenvectors)
|
||||
{
|
||||
scaledMat.diagonal().array () -= eivals(1);
|
||||
Scalar a2 = numext::abs2(scaledMat(0,0));
|
||||
Scalar c2 = numext::abs2(scaledMat(1,1));
|
||||
Scalar b2 = numext::abs2(scaledMat(1,0));
|
||||
if(a2>c2)
|
||||
if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
|
||||
{
|
||||
eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
|
||||
eivecs.col(1) /= sqrt(a2+b2);
|
||||
eivecs.setIdentity();
|
||||
}
|
||||
else
|
||||
{
|
||||
eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
|
||||
eivecs.col(1) /= sqrt(c2+b2);
|
||||
}
|
||||
scaledMat.diagonal().array () -= eivals(1);
|
||||
Scalar a2 = numext::abs2(scaledMat(0,0));
|
||||
Scalar c2 = numext::abs2(scaledMat(1,1));
|
||||
Scalar b2 = numext::abs2(scaledMat(1,0));
|
||||
if(a2>c2)
|
||||
{
|
||||
eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
|
||||
eivecs.col(1) /= sqrt(a2+b2);
|
||||
}
|
||||
else
|
||||
{
|
||||
eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
|
||||
eivecs.col(1) /= sqrt(c2+b2);
|
||||
}
|
||||
|
||||
eivecs.col(0) << eivecs.col(1).unitOrthogonal();
|
||||
eivecs.col(0) << eivecs.col(1).unitOrthogonal();
|
||||
}
|
||||
}
|
||||
|
||||
// Rescale back to the original size.
|
||||
|
|
@ -746,7 +736,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
|||
}
|
||||
|
||||
namespace internal {
|
||||
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
|
||||
template<typename RealScalar, typename Scalar, typename Index>
|
||||
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
|
||||
{
|
||||
using std::abs;
|
||||
|
|
@ -798,8 +788,7 @@ static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index sta
|
|||
// apply the givens rotation to the unit matrix Q = Q * G
|
||||
if (matrixQ)
|
||||
{
|
||||
// FIXME if StorageOrder == RowMajor this operation is not very efficient
|
||||
Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
|
||||
Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor> > q(matrixQ,n,n);
|
||||
q.applyOnTheRight(k,k+1,rot);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -19,10 +19,12 @@ namespace Eigen {
|
|||
*
|
||||
* \brief An axis aligned box
|
||||
*
|
||||
* \param _Scalar the type of the scalar coefficients
|
||||
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
|
||||
* \tparam _Scalar the type of the scalar coefficients
|
||||
* \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
|
||||
*
|
||||
* This class represents an axis aligned box as a pair of the minimal and maximal corners.
|
||||
* \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using isEmpty().
|
||||
* \sa alignedboxtypedefs
|
||||
*/
|
||||
template <typename _Scalar, int _AmbientDim>
|
||||
class AlignedBox
|
||||
|
|
@ -40,18 +42,21 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
/** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */
|
||||
enum CornerType
|
||||
{
|
||||
/** 1D names */
|
||||
/** 1D names @{ */
|
||||
Min=0, Max=1,
|
||||
/** @} */
|
||||
|
||||
/** Added names for 2D */
|
||||
/** Identifier for 2D corner @{ */
|
||||
BottomLeft=0, BottomRight=1,
|
||||
TopLeft=2, TopRight=3,
|
||||
/** @} */
|
||||
|
||||
/** Added names for 3D */
|
||||
/** Identifier for 3D corner @{ */
|
||||
BottomLeftFloor=0, BottomRightFloor=1,
|
||||
TopLeftFloor=2, TopRightFloor=3,
|
||||
BottomLeftCeil=4, BottomRightCeil=5,
|
||||
TopLeftCeil=6, TopRightCeil=7
|
||||
/** @} */
|
||||
};
|
||||
|
||||
|
||||
|
|
@ -63,34 +68,33 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim)
|
||||
{ setEmpty(); }
|
||||
|
||||
/** Constructs a box with extremities \a _min and \a _max. */
|
||||
/** Constructs a box with extremities \a _min and \a _max.
|
||||
* \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty. */
|
||||
template<typename OtherVectorType1, typename OtherVectorType2>
|
||||
inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {}
|
||||
|
||||
/** Constructs a box containing a single point \a p. */
|
||||
template<typename Derived>
|
||||
inline explicit AlignedBox(const MatrixBase<Derived>& a_p)
|
||||
{
|
||||
typename internal::nested<Derived,2>::type p(a_p.derived());
|
||||
m_min = p;
|
||||
m_max = p;
|
||||
}
|
||||
inline explicit AlignedBox(const MatrixBase<Derived>& p) : m_min(p), m_max(m_min)
|
||||
{ }
|
||||
|
||||
~AlignedBox() {}
|
||||
|
||||
/** \returns the dimension in which the box holds */
|
||||
inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); }
|
||||
|
||||
/** \deprecated use isEmpty */
|
||||
/** \deprecated use isEmpty() */
|
||||
inline bool isNull() const { return isEmpty(); }
|
||||
|
||||
/** \deprecated use setEmpty */
|
||||
/** \deprecated use setEmpty() */
|
||||
inline void setNull() { setEmpty(); }
|
||||
|
||||
/** \returns true if the box is empty. */
|
||||
/** \returns true if the box is empty.
|
||||
* \sa setEmpty */
|
||||
inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); }
|
||||
|
||||
/** Makes \c *this an empty box. */
|
||||
/** Makes \c *this an empty box.
|
||||
* \sa isEmpty */
|
||||
inline void setEmpty()
|
||||
{
|
||||
m_min.setConstant( ScalarTraits::highest() );
|
||||
|
|
@ -159,7 +163,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
* a uniform distribution */
|
||||
inline VectorType sample() const
|
||||
{
|
||||
VectorType r;
|
||||
VectorType r(dim());
|
||||
for(Index d=0; d<dim(); ++d)
|
||||
{
|
||||
if(!ScalarTraits::IsInteger)
|
||||
|
|
@ -175,27 +179,34 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
|
||||
/** \returns true if the point \a p is inside the box \c *this. */
|
||||
template<typename Derived>
|
||||
inline bool contains(const MatrixBase<Derived>& a_p) const
|
||||
inline bool contains(const MatrixBase<Derived>& p) const
|
||||
{
|
||||
typename internal::nested<Derived,2>::type p(a_p.derived());
|
||||
return (m_min.array()<=p.array()).all() && (p.array()<=m_max.array()).all();
|
||||
typename internal::nested<Derived,2>::type p_n(p.derived());
|
||||
return (m_min.array()<=p_n.array()).all() && (p_n.array()<=m_max.array()).all();
|
||||
}
|
||||
|
||||
/** \returns true if the box \a b is entirely inside the box \c *this. */
|
||||
inline bool contains(const AlignedBox& b) const
|
||||
{ return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); }
|
||||
|
||||
/** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
|
||||
/** \returns true if the box \a b is intersecting the box \c *this.
|
||||
* \sa intersection, clamp */
|
||||
inline bool intersects(const AlignedBox& b) const
|
||||
{ return (m_min.array()<=(b.max)().array()).all() && ((b.min)().array()<=m_max.array()).all(); }
|
||||
|
||||
/** Extends \c *this such that it contains the point \a p and returns a reference to \c *this.
|
||||
* \sa extend(const AlignedBox&) */
|
||||
template<typename Derived>
|
||||
inline AlignedBox& extend(const MatrixBase<Derived>& a_p)
|
||||
inline AlignedBox& extend(const MatrixBase<Derived>& p)
|
||||
{
|
||||
typename internal::nested<Derived,2>::type p(a_p.derived());
|
||||
m_min = m_min.cwiseMin(p);
|
||||
m_max = m_max.cwiseMax(p);
|
||||
typename internal::nested<Derived,2>::type p_n(p.derived());
|
||||
m_min = m_min.cwiseMin(p_n);
|
||||
m_max = m_max.cwiseMax(p_n);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
|
||||
/** Extends \c *this such that it contains the box \a b and returns a reference to \c *this.
|
||||
* \sa merged, extend(const MatrixBase&) */
|
||||
inline AlignedBox& extend(const AlignedBox& b)
|
||||
{
|
||||
m_min = m_min.cwiseMin(b.m_min);
|
||||
|
|
@ -203,7 +214,9 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
return *this;
|
||||
}
|
||||
|
||||
/** Clamps \c *this by the box \a b and returns a reference to \c *this. */
|
||||
/** Clamps \c *this by the box \a b and returns a reference to \c *this.
|
||||
* \note If the boxes don't intersect, the resulting box is empty.
|
||||
* \sa intersection(), intersects() */
|
||||
inline AlignedBox& clamp(const AlignedBox& b)
|
||||
{
|
||||
m_min = m_min.cwiseMax(b.m_min);
|
||||
|
|
@ -211,11 +224,15 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
return *this;
|
||||
}
|
||||
|
||||
/** Returns an AlignedBox that is the intersection of \a b and \c *this */
|
||||
/** Returns an AlignedBox that is the intersection of \a b and \c *this
|
||||
* \note If the boxes don't intersect, the resulting box is empty.
|
||||
* \sa intersects(), clamp, contains() */
|
||||
inline AlignedBox intersection(const AlignedBox& b) const
|
||||
{return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); }
|
||||
|
||||
/** Returns an AlignedBox that is the union of \a b and \c *this */
|
||||
/** Returns an AlignedBox that is the union of \a b and \c *this.
|
||||
* \note Merging with an empty box may result in a box bigger than \c *this.
|
||||
* \sa extend(const AlignedBox&) */
|
||||
inline AlignedBox merged(const AlignedBox& b) const
|
||||
{ return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); }
|
||||
|
||||
|
|
@ -231,20 +248,20 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
|
||||
/** \returns the squared distance between the point \a p and the box \c *this,
|
||||
* and zero if \a p is inside the box.
|
||||
* \sa exteriorDistance()
|
||||
* \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& a_p) const;
|
||||
inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& p) const;
|
||||
|
||||
/** \returns the squared distance between the boxes \a b and \c *this,
|
||||
* and zero if the boxes intersect.
|
||||
* \sa exteriorDistance()
|
||||
* \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&)
|
||||
*/
|
||||
inline Scalar squaredExteriorDistance(const AlignedBox& b) const;
|
||||
|
||||
/** \returns the distance between the point \a p and the box \c *this,
|
||||
* and zero if \a p is inside the box.
|
||||
* \sa squaredExteriorDistance()
|
||||
* \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const
|
||||
|
|
@ -252,7 +269,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
|||
|
||||
/** \returns the distance between the boxes \a b and \c *this,
|
||||
* and zero if the boxes intersect.
|
||||
* \sa squaredExteriorDistance()
|
||||
* \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&)
|
||||
*/
|
||||
inline NonInteger exteriorDistance(const AlignedBox& b) const
|
||||
{ using std::sqrt; return sqrt(NonInteger(squaredExteriorDistance(b))); }
|
||||
|
|
|
|||
|
|
@ -131,7 +131,7 @@ public:
|
|||
m_angle = Scalar(other.angle());
|
||||
}
|
||||
|
||||
static inline const AngleAxis Identity() { return AngleAxis(0, Vector3::UnitX()); }
|
||||
static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); }
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
|
|
@ -165,8 +165,8 @@ AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived
|
|||
Scalar n2 = q.vec().squaredNorm();
|
||||
if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
|
||||
{
|
||||
m_angle = 0;
|
||||
m_axis << 1, 0, 0;
|
||||
m_angle = Scalar(0);
|
||||
m_axis << Scalar(1), Scalar(0), Scalar(0);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
|
|
|||
|
|
@ -79,7 +79,7 @@ template<typename MatrixType,int _Direction> class Homogeneous
|
|||
{
|
||||
if( (int(Direction)==Vertical && row==m_matrix.rows())
|
||||
|| (int(Direction)==Horizontal && col==m_matrix.cols()))
|
||||
return 1;
|
||||
return Scalar(1);
|
||||
return m_matrix.coeff(row, col);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -102,11 +102,11 @@ public:
|
|||
/** \returns a quaternion representing an identity rotation
|
||||
* \sa MatrixBase::Identity()
|
||||
*/
|
||||
static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
|
||||
static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
|
||||
|
||||
/** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
|
||||
*/
|
||||
inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
|
||||
inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
|
||||
|
||||
/** \returns the squared norm of the quaternion's coefficients
|
||||
* \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
|
||||
|
|
@ -161,7 +161,7 @@ public:
|
|||
{ return coeffs().isApprox(other.coeffs(), prec); }
|
||||
|
||||
/** return the result vector of \a v through the rotation*/
|
||||
EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;
|
||||
EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
|
|
@ -231,7 +231,7 @@ class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
|
|||
public:
|
||||
typedef _Scalar Scalar;
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
|
||||
using Base::operator*=;
|
||||
|
||||
typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
|
||||
|
|
@ -341,7 +341,7 @@ class Map<const Quaternion<_Scalar>, _Options >
|
|||
public:
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename internal::traits<Map>::Coefficients Coefficients;
|
||||
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
|
||||
using Base::operator*=;
|
||||
|
||||
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
||||
|
|
@ -378,7 +378,7 @@ class Map<Quaternion<_Scalar>, _Options >
|
|||
public:
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename internal::traits<Map>::Coefficients Coefficients;
|
||||
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
|
||||
using Base::operator*=;
|
||||
|
||||
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
||||
|
|
@ -461,7 +461,7 @@ EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const Quaterni
|
|||
*/
|
||||
template <class Derived>
|
||||
EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
|
||||
QuaternionBase<Derived>::_transformVector(Vector3 v) const
|
||||
QuaternionBase<Derived>::_transformVector(const Vector3& v) const
|
||||
{
|
||||
// Note that this algorithm comes from the optimization by hand
|
||||
// of the conversion to a Matrix followed by a Matrix/Vector product.
|
||||
|
|
@ -637,7 +637,7 @@ inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Der
|
|||
{
|
||||
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
|
||||
Scalar n2 = this->squaredNorm();
|
||||
if (n2 > 0)
|
||||
if (n2 > Scalar(0))
|
||||
return Quaternion<Scalar>(conjugate().coeffs() / n2);
|
||||
else
|
||||
{
|
||||
|
|
@ -667,12 +667,10 @@ template <class OtherDerived>
|
|||
inline typename internal::traits<Derived>::Scalar
|
||||
QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
|
||||
{
|
||||
using std::acos;
|
||||
using std::atan2;
|
||||
using std::abs;
|
||||
Scalar d = abs(this->dot(other));
|
||||
if (d>=Scalar(1))
|
||||
return Scalar(0);
|
||||
return Scalar(2) * acos(d);
|
||||
Quaternion<Scalar> d = (*this) * other.conjugate();
|
||||
return Scalar(2) * atan2( d.vec().norm(), abs(d.w()) );
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -712,7 +710,7 @@ QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerive
|
|||
scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
|
||||
scale1 = sin( ( t * theta) ) / sinTheta;
|
||||
}
|
||||
if(d<0) scale1 = -scale1;
|
||||
if(d<Scalar(0)) scale1 = -scale1;
|
||||
|
||||
return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
|
||||
}
|
||||
|
|
|
|||
|
|
@ -65,10 +65,10 @@ class DiagonalPreconditioner
|
|||
{
|
||||
typename MatType::InnerIterator it(mat,j);
|
||||
while(it && it.index()!=j) ++it;
|
||||
if(it && it.index()==j)
|
||||
if(it && it.index()==j && it.value()!=Scalar(0))
|
||||
m_invdiag(j) = Scalar(1)/it.value();
|
||||
else
|
||||
m_invdiag(j) = 0;
|
||||
m_invdiag(j) = Scalar(1);
|
||||
}
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
|
|
|
|||
|
|
@ -151,20 +151,7 @@ struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
|
|||
* \endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method. Here is a step by
|
||||
* step execution example starting with a random guess and printing the evolution
|
||||
* of the estimated error:
|
||||
* * \code
|
||||
* x = VectorXd::Random(n);
|
||||
* solver.setMaxIterations(1);
|
||||
* int i = 0;
|
||||
* do {
|
||||
* x = solver.solveWithGuess(b,x);
|
||||
* std::cout << i << " : " << solver.error() << std::endl;
|
||||
* ++i;
|
||||
* } while (solver.info()!=Success && i<100);
|
||||
* \endcode
|
||||
* Note that such a step by step excution is slightly slower.
|
||||
* One can control the start using the solveWithGuess() method.
|
||||
*
|
||||
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
*/
|
||||
|
|
@ -199,7 +186,8 @@ public:
|
|||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
BiCGSTAB(const MatrixType& A) : Base(A) {}
|
||||
template<typename MatrixDerived>
|
||||
explicit BiCGSTAB(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
|
||||
|
||||
~BiCGSTAB() {}
|
||||
|
||||
|
|
|
|||
|
|
@ -112,9 +112,9 @@ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
|||
* This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
|
||||
* The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
|
||||
* Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower.
|
||||
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
||||
*
|
||||
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
||||
|
|
@ -137,20 +137,7 @@ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
|||
* \endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method. Here is a step by
|
||||
* step execution example starting with a random guess and printing the evolution
|
||||
* of the estimated error:
|
||||
* * \code
|
||||
* x = VectorXd::Random(n);
|
||||
* cg.setMaxIterations(1);
|
||||
* int i = 0;
|
||||
* do {
|
||||
* x = cg.solveWithGuess(b,x);
|
||||
* std::cout << i << " : " << cg.error() << std::endl;
|
||||
* ++i;
|
||||
* } while (cg.info()!=Success && i<100);
|
||||
* \endcode
|
||||
* Note that such a step by step excution is slightly slower.
|
||||
* One can control the start using the solveWithGuess() method.
|
||||
*
|
||||
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
*/
|
||||
|
|
@ -189,7 +176,8 @@ public:
|
|||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
ConjugateGradient(const MatrixType& A) : Base(A) {}
|
||||
template<typename MatrixDerived>
|
||||
explicit ConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
|
||||
|
||||
~ConjugateGradient() {}
|
||||
|
||||
|
|
@ -213,6 +201,10 @@ public:
|
|||
template<typename Rhs,typename Dest>
|
||||
void _solveWithGuess(const Rhs& b, Dest& x) const
|
||||
{
|
||||
typedef typename internal::conditional<UpLo==(Lower|Upper),
|
||||
const MatrixType&,
|
||||
SparseSelfAdjointView<const MatrixType, UpLo>
|
||||
>::type MatrixWrapperType;
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
|
|
@ -222,8 +214,7 @@ public:
|
|||
m_error = Base::m_tolerance;
|
||||
|
||||
typename Dest::ColXpr xj(x,j);
|
||||
internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj,
|
||||
Base::m_preconditioner, m_iterations, m_error);
|
||||
internal::conjugate_gradient(MatrixWrapperType(*mp_matrix), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
|
|
@ -234,7 +225,7 @@ public:
|
|||
template<typename Rhs,typename Dest>
|
||||
void _solve(const Rhs& b, Dest& x) const
|
||||
{
|
||||
x.setOnes();
|
||||
x.setZero();
|
||||
_solveWithGuess(b,x);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -150,7 +150,6 @@ class IncompleteLUT : internal::noncopyable
|
|||
{
|
||||
analyzePattern(amat);
|
||||
factorize(amat);
|
||||
m_isInitialized = m_factorizationIsOk;
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
|
@ -160,7 +159,7 @@ class IncompleteLUT : internal::noncopyable
|
|||
template<typename Rhs, typename Dest>
|
||||
void _solve(const Rhs& b, Dest& x) const
|
||||
{
|
||||
x = m_Pinv * b;
|
||||
x = m_Pinv * b;
|
||||
x = m_lu.template triangularView<UnitLower>().solve(x);
|
||||
x = m_lu.template triangularView<Upper>().solve(x);
|
||||
x = m_P * x;
|
||||
|
|
@ -223,18 +222,29 @@ template<typename _MatrixType>
|
|||
void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
|
||||
{
|
||||
// Compute the Fill-reducing permutation
|
||||
// Since ILUT does not perform any numerical pivoting,
|
||||
// it is highly preferable to keep the diagonal through symmetric permutations.
|
||||
#ifndef EIGEN_MPL2_ONLY
|
||||
// To this end, let's symmetrize the pattern and perform AMD on it.
|
||||
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
|
||||
SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
|
||||
// Symmetrize the pattern
|
||||
// FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
|
||||
// on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
|
||||
SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
|
||||
AtA.prune(keep_diag());
|
||||
internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering...
|
||||
|
||||
m_Pinv = m_P.inverse(); // ... and the inverse permutation
|
||||
AMDOrdering<Index> ordering;
|
||||
ordering(AtA,m_P);
|
||||
m_Pinv = m_P.inverse(); // cache the inverse permutation
|
||||
#else
|
||||
// If AMD is not available, (MPL2-only), then let's use the slower COLAMD routine.
|
||||
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
|
||||
COLAMDOrdering<Index> ordering;
|
||||
ordering(mat1,m_Pinv);
|
||||
m_P = m_Pinv.inverse();
|
||||
#endif
|
||||
|
||||
m_analysisIsOk = true;
|
||||
m_factorizationIsOk = false;
|
||||
m_isInitialized = false;
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
|
|
@ -442,6 +452,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
|
|||
m_lu.makeCompressed();
|
||||
|
||||
m_factorizationIsOk = true;
|
||||
m_isInitialized = m_factorizationIsOk;
|
||||
m_info = Success;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -49,10 +49,11 @@ public:
|
|||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
IterativeSolverBase(const MatrixType& A)
|
||||
template<typename InputDerived>
|
||||
IterativeSolverBase(const EigenBase<InputDerived>& A)
|
||||
{
|
||||
init();
|
||||
compute(A);
|
||||
compute(A.derived());
|
||||
}
|
||||
|
||||
~IterativeSolverBase() {}
|
||||
|
|
@ -62,9 +63,11 @@ public:
|
|||
* Currently, this function mostly call analyzePattern on the preconditioner. In the future
|
||||
* we might, for instance, implement column reodering for faster matrix vector products.
|
||||
*/
|
||||
Derived& analyzePattern(const MatrixType& A)
|
||||
template<typename InputDerived>
|
||||
Derived& analyzePattern(const EigenBase<InputDerived>& A)
|
||||
{
|
||||
m_preconditioner.analyzePattern(A);
|
||||
grabInput(A.derived());
|
||||
m_preconditioner.analyzePattern(*mp_matrix);
|
||||
m_isInitialized = true;
|
||||
m_analysisIsOk = true;
|
||||
m_info = Success;
|
||||
|
|
@ -80,11 +83,12 @@ public:
|
|||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
Derived& factorize(const MatrixType& A)
|
||||
template<typename InputDerived>
|
||||
Derived& factorize(const EigenBase<InputDerived>& A)
|
||||
{
|
||||
grabInput(A.derived());
|
||||
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
||||
mp_matrix = &A;
|
||||
m_preconditioner.factorize(A);
|
||||
m_preconditioner.factorize(*mp_matrix);
|
||||
m_factorizationIsOk = true;
|
||||
m_info = Success;
|
||||
return derived();
|
||||
|
|
@ -100,10 +104,11 @@ public:
|
|||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
Derived& compute(const MatrixType& A)
|
||||
template<typename InputDerived>
|
||||
Derived& compute(const EigenBase<InputDerived>& A)
|
||||
{
|
||||
mp_matrix = &A;
|
||||
m_preconditioner.compute(A);
|
||||
grabInput(A.derived());
|
||||
m_preconditioner.compute(*mp_matrix);
|
||||
m_isInitialized = true;
|
||||
m_analysisIsOk = true;
|
||||
m_factorizationIsOk = true;
|
||||
|
|
@ -212,6 +217,28 @@ public:
|
|||
}
|
||||
|
||||
protected:
|
||||
|
||||
template<typename InputDerived>
|
||||
void grabInput(const EigenBase<InputDerived>& A)
|
||||
{
|
||||
// we const cast to prevent the creation of a MatrixType temporary by the compiler.
|
||||
grabInput_impl(A.const_cast_derived());
|
||||
}
|
||||
|
||||
template<typename InputDerived>
|
||||
void grabInput_impl(const EigenBase<InputDerived>& A)
|
||||
{
|
||||
m_copyMatrix = A;
|
||||
mp_matrix = &m_copyMatrix;
|
||||
}
|
||||
|
||||
void grabInput_impl(MatrixType& A)
|
||||
{
|
||||
if(MatrixType::RowsAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime==Dynamic)
|
||||
m_copyMatrix.resize(0,0);
|
||||
mp_matrix = &A;
|
||||
}
|
||||
|
||||
void init()
|
||||
{
|
||||
m_isInitialized = false;
|
||||
|
|
@ -220,6 +247,7 @@ protected:
|
|||
m_maxIterations = -1;
|
||||
m_tolerance = NumTraits<Scalar>::epsilon();
|
||||
}
|
||||
MatrixType m_copyMatrix;
|
||||
const MatrixType* mp_matrix;
|
||||
Preconditioner m_preconditioner;
|
||||
|
||||
|
|
|
|||
|
|
@ -374,6 +374,12 @@ template<typename _MatrixType> class FullPivLU
|
|||
inline Index cols() const { return m_lu.cols(); }
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
MatrixType m_lu;
|
||||
PermutationPType m_p;
|
||||
PermutationQType m_q;
|
||||
|
|
@ -418,6 +424,8 @@ FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
|
|||
template<typename MatrixType>
|
||||
FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
// the permutations are stored as int indices, so just to be sure:
|
||||
eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
|
||||
|
||||
|
|
|
|||
|
|
@ -171,6 +171,12 @@ template<typename _MatrixType> class PartialPivLU
|
|||
inline Index cols() const { return m_lu.cols(); }
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
MatrixType m_lu;
|
||||
PermutationType m_p;
|
||||
TranspositionType m_rowsTranspositions;
|
||||
|
|
@ -386,6 +392,8 @@ void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, t
|
|||
template<typename MatrixType>
|
||||
PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
// the row permutation is stored as int indices, so just to be sure:
|
||||
eigen_assert(matrix.rows()<NumTraits<int>::highest());
|
||||
|
||||
|
|
|
|||
|
|
@ -137,22 +137,27 @@ void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,Index>& C, Permutation
|
|||
degree[i] = len[i]; // degree of node i
|
||||
}
|
||||
mark = internal::cs_wclear<Index>(0, 0, w, n); /* clear w */
|
||||
elen[n] = -2; /* n is a dead element */
|
||||
Cp[n] = -1; /* n is a root of assembly tree */
|
||||
w[n] = 0; /* n is a dead element */
|
||||
|
||||
/* --- Initialize degree lists ------------------------------------------ */
|
||||
for(i = 0; i < n; i++)
|
||||
{
|
||||
bool has_diag = false;
|
||||
for(p = Cp[i]; p<Cp[i+1]; ++p)
|
||||
if(Ci[p]==i)
|
||||
{
|
||||
has_diag = true;
|
||||
break;
|
||||
}
|
||||
|
||||
d = degree[i];
|
||||
if(d == 0) /* node i is empty */
|
||||
if(d == 1 && has_diag) /* node i is empty */
|
||||
{
|
||||
elen[i] = -2; /* element i is dead */
|
||||
nel++;
|
||||
Cp[i] = -1; /* i is a root of assembly tree */
|
||||
w[i] = 0;
|
||||
}
|
||||
else if(d > dense) /* node i is dense */
|
||||
else if(d > dense || !has_diag) /* node i is dense or has no structural diagonal element */
|
||||
{
|
||||
nv[i] = 0; /* absorb i into element n */
|
||||
elen[i] = -1; /* node i is dead */
|
||||
|
|
@ -168,6 +173,10 @@ void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,Index>& C, Permutation
|
|||
}
|
||||
}
|
||||
|
||||
elen[n] = -2; /* n is a dead element */
|
||||
Cp[n] = -1; /* n is a root of assembly tree */
|
||||
w[n] = 0; /* n is a dead element */
|
||||
|
||||
while (nel < n) /* while (selecting pivots) do */
|
||||
{
|
||||
/* --- Select node of minimum approximate degree -------------------- */
|
||||
|
|
|
|||
|
|
@ -384,6 +384,12 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
|||
}
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
PermutationType m_colsPermutation;
|
||||
|
|
@ -422,6 +428,8 @@ typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDetermina
|
|||
template<typename MatrixType>
|
||||
ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
using std::abs;
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
|
|
@ -463,20 +471,10 @@ ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const
|
|||
// we store that back into our table: it can't hurt to correct our table.
|
||||
m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm;
|
||||
|
||||
// if the current biggest column is smaller than epsilon times the initial biggest column,
|
||||
// terminate to avoid generating nan/inf values.
|
||||
// Note that here, if we test instead for "biggest == 0", we get a failure every 1000 (or so)
|
||||
// repetitions of the unit test, with the result of solve() filled with large values of the order
|
||||
// of 1/(size*epsilon).
|
||||
if(biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
|
||||
{
|
||||
// Track the number of meaningful pivots but do not stop the decomposition to make
|
||||
// sure that the initial matrix is properly reproduced. See bug 941.
|
||||
if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
|
||||
m_nonzero_pivots = k;
|
||||
m_hCoeffs.tail(size-k).setZero();
|
||||
m_qr.bottomRightCorner(rows-k,cols-k)
|
||||
.template triangularView<StrictlyLower>()
|
||||
.setZero();
|
||||
break;
|
||||
}
|
||||
|
||||
// apply the transposition to the columns
|
||||
m_colsTranspositions.coeffRef(k) = biggest_col_index;
|
||||
|
|
@ -505,7 +503,7 @@ ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const
|
|||
}
|
||||
|
||||
m_colsPermutation.setIdentity(PermIndexType(cols));
|
||||
for(PermIndexType k = 0; k < m_nonzero_pivots; ++k)
|
||||
for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k)
|
||||
m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
|
||||
|
||||
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
|
||||
|
|
@ -555,13 +553,15 @@ struct solve_retval<ColPivHouseholderQR<_MatrixType>, Rhs>
|
|||
|
||||
} // end namespace internal
|
||||
|
||||
/** \returns the matrix Q as a sequence of householder transformations */
|
||||
/** \returns the matrix Q as a sequence of householder transformations.
|
||||
* You can extract the meaningful part only by using:
|
||||
* \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/
|
||||
template<typename MatrixType>
|
||||
typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
|
||||
::householderQ() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
|
||||
return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()).setLength(m_nonzero_pivots);
|
||||
return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
|
||||
}
|
||||
|
||||
/** \return the column-pivoting Householder QR decomposition of \c *this.
|
||||
|
|
|
|||
|
|
@ -63,12 +63,12 @@ ColPivHouseholderQR<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynami
|
|||
\
|
||||
m_nonzero_pivots = 0; \
|
||||
m_maxpivot = RealScalar(0);\
|
||||
m_colsPermutation.resize((int)cols); \
|
||||
m_colsPermutation.resize(cols); \
|
||||
m_colsPermutation.indices().setZero(); \
|
||||
\
|
||||
lapack_int lda = (lapack_int) m_qr.outerStride(), i; \
|
||||
lapack_int lda = m_qr.outerStride(), i; \
|
||||
lapack_int matrix_order = MKLCOLROW; \
|
||||
LAPACKE_##MKLPREFIX##geqp3( matrix_order, (lapack_int)rows, (lapack_int)cols, (MKLTYPE*)m_qr.data(), lda, (lapack_int*)m_colsPermutation.indices().data(), (MKLTYPE*)m_hCoeffs.data()); \
|
||||
LAPACKE_##MKLPREFIX##geqp3( matrix_order, rows, cols, (MKLTYPE*)m_qr.data(), lda, (lapack_int*)m_colsPermutation.indices().data(), (MKLTYPE*)m_hCoeffs.data()); \
|
||||
m_isInitialized = true; \
|
||||
m_maxpivot=m_qr.diagonal().cwiseAbs().maxCoeff(); \
|
||||
m_hCoeffs.adjointInPlace(); \
|
||||
|
|
|
|||
|
|
@ -368,6 +368,12 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
|||
RealScalar maxPivot() const { return m_maxpivot; }
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
IntDiagSizeVectorType m_rows_transpositions;
|
||||
|
|
@ -407,6 +413,8 @@ typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDetermin
|
|||
template<typename MatrixType>
|
||||
FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
using std::abs;
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
|
|
|
|||
|
|
@ -189,6 +189,12 @@ template<typename _MatrixType> class HouseholderQR
|
|||
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
RowVectorType m_temp;
|
||||
|
|
@ -349,6 +355,8 @@ struct solve_retval<HouseholderQR<_MatrixType>, Rhs>
|
|||
template<typename MatrixType>
|
||||
HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
Index size = (std::min)(rows,cols);
|
||||
|
|
|
|||
|
|
@ -47,7 +47,7 @@ namespace Eigen {
|
|||
* You can then apply it to a vector.
|
||||
*
|
||||
* R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
|
||||
* NOTE : The Index type of R is always UF_long. You can get it with SPQR::Index
|
||||
* NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index
|
||||
*
|
||||
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
|
||||
* NOTE
|
||||
|
|
@ -59,24 +59,18 @@ class SPQR
|
|||
public:
|
||||
typedef typename _MatrixType::Scalar Scalar;
|
||||
typedef typename _MatrixType::RealScalar RealScalar;
|
||||
typedef UF_long Index ;
|
||||
typedef SuiteSparse_long Index ;
|
||||
typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType;
|
||||
typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
|
||||
public:
|
||||
SPQR()
|
||||
: m_isInitialized(false),
|
||||
m_ordering(SPQR_ORDERING_DEFAULT),
|
||||
m_allow_tol(SPQR_DEFAULT_TOL),
|
||||
m_tolerance (NumTraits<Scalar>::epsilon())
|
||||
: m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
|
||||
{
|
||||
cholmod_l_start(&m_cc);
|
||||
}
|
||||
|
||||
SPQR(const _MatrixType& matrix)
|
||||
: m_isInitialized(false),
|
||||
m_ordering(SPQR_ORDERING_DEFAULT),
|
||||
m_allow_tol(SPQR_DEFAULT_TOL),
|
||||
m_tolerance (NumTraits<Scalar>::epsilon())
|
||||
SPQR(const _MatrixType& matrix)
|
||||
: m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
|
||||
{
|
||||
cholmod_l_start(&m_cc);
|
||||
compute(matrix);
|
||||
|
|
@ -101,10 +95,26 @@ class SPQR
|
|||
if(m_isInitialized) SPQR_free();
|
||||
|
||||
MatrixType mat(matrix);
|
||||
|
||||
/* Compute the default threshold as in MatLab, see:
|
||||
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
|
||||
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
|
||||
*/
|
||||
RealScalar pivotThreshold = m_tolerance;
|
||||
if(m_useDefaultThreshold)
|
||||
{
|
||||
using std::max;
|
||||
RealScalar max2Norm = 0.0;
|
||||
for (int j = 0; j < mat.cols(); j++) max2Norm = (max)(max2Norm, mat.col(j).norm());
|
||||
if(max2Norm==RealScalar(0))
|
||||
max2Norm = RealScalar(1);
|
||||
pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
|
||||
}
|
||||
|
||||
cholmod_sparse A;
|
||||
A = viewAsCholmod(mat);
|
||||
Index col = matrix.cols();
|
||||
m_rank = SuiteSparseQR<Scalar>(m_ordering, m_tolerance, col, &A,
|
||||
m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
|
||||
&m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
|
||||
|
||||
if (!m_cR)
|
||||
|
|
@ -120,7 +130,7 @@ class SPQR
|
|||
/**
|
||||
* Get the number of rows of the input matrix and the Q matrix
|
||||
*/
|
||||
inline Index rows() const {return m_H->nrow; }
|
||||
inline Index rows() const {return m_cR->nrow; }
|
||||
|
||||
/**
|
||||
* Get the number of columns of the input matrix.
|
||||
|
|
@ -145,16 +155,25 @@ class SPQR
|
|||
{
|
||||
eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
|
||||
eigen_assert(b.cols()==1 && "This method is for vectors only");
|
||||
|
||||
|
||||
//Compute Q^T * b
|
||||
typename Dest::PlainObject y;
|
||||
typename Dest::PlainObject y, y2;
|
||||
y = matrixQ().transpose() * b;
|
||||
// Solves with the triangular matrix R
|
||||
|
||||
// Solves with the triangular matrix R
|
||||
Index rk = this->rank();
|
||||
y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y.topRows(rk));
|
||||
y.bottomRows(cols()-rk).setZero();
|
||||
y2 = y;
|
||||
y.resize((std::max)(cols(),Index(y.rows())),y.cols());
|
||||
y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
|
||||
|
||||
// Apply the column permutation
|
||||
dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
|
||||
// colsPermutation() performs a copy of the permutation,
|
||||
// so let's apply it manually:
|
||||
for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
|
||||
for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
|
||||
|
||||
// y.bottomRows(y.rows()-rk).setZero();
|
||||
// dest = colsPermutation() * y.topRows(cols());
|
||||
|
||||
m_info = Success;
|
||||
}
|
||||
|
|
@ -197,7 +216,11 @@ class SPQR
|
|||
/// Set the fill-reducing ordering method to be used
|
||||
void setSPQROrdering(int ord) { m_ordering = ord;}
|
||||
/// Set the tolerance tol to treat columns with 2-norm < =tol as zero
|
||||
void setPivotThreshold(const RealScalar& tol) { m_tolerance = tol; }
|
||||
void setPivotThreshold(const RealScalar& tol)
|
||||
{
|
||||
m_useDefaultThreshold = false;
|
||||
m_tolerance = tol;
|
||||
}
|
||||
|
||||
/** \returns a pointer to the SPQR workspace */
|
||||
cholmod_common *cholmodCommon() const { return &m_cc; }
|
||||
|
|
@ -230,6 +253,7 @@ class SPQR
|
|||
mutable cholmod_dense *m_HTau; // The Householder coefficients
|
||||
mutable Index m_rank; // The rank of the matrix
|
||||
mutable cholmod_common m_cc; // Workspace and parameters
|
||||
bool m_useDefaultThreshold; // Use default threshold
|
||||
template<typename ,typename > friend struct SPQR_QProduct;
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -742,6 +742,11 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
|
||||
private:
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
protected:
|
||||
MatrixUType m_matrixU;
|
||||
|
|
@ -818,6 +823,8 @@ template<typename MatrixType, int QRPreconditioner>
|
|||
JacobiSVD<MatrixType, QRPreconditioner>&
|
||||
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
using std::abs;
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
|
||||
|
|
|
|||
|
|
@ -57,6 +57,16 @@ public:
|
|||
inline BlockImpl(const XprType& xpr, int startRow, int startCol, int blockRows, int blockCols)
|
||||
: m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols)
|
||||
{}
|
||||
|
||||
inline const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_matrix.coeff(row + IsRowMajor ? m_outerStart : 0, col +IsRowMajor ? 0 : m_outerStart);
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int index) const
|
||||
{
|
||||
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
|
||||
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
|
||||
|
|
@ -226,6 +236,21 @@ public:
|
|||
else
|
||||
return Map<const Matrix<Index,OuterSize,1> >(m_matrix.innerNonZeroPtr()+m_outerStart, m_outerSize.value()).sum();
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int row, int col)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int index) const
|
||||
{
|
||||
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
|
||||
}
|
||||
|
||||
const Scalar& lastCoeff() const
|
||||
{
|
||||
|
|
@ -313,6 +338,16 @@ public:
|
|||
else
|
||||
return Map<const Matrix<Index,OuterSize,1> >(m_matrix.innerNonZeroPtr()+m_outerStart, m_outerSize.value()).sum();
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int index) const
|
||||
{
|
||||
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
|
||||
}
|
||||
|
||||
const Scalar& lastCoeff() const
|
||||
{
|
||||
|
|
@ -355,7 +390,8 @@ const typename SparseMatrixBase<Derived>::ConstInnerVectorReturnType SparseMatri
|
|||
* is col-major (resp. row-major).
|
||||
*/
|
||||
template<typename Derived>
|
||||
Block<Derived,Dynamic,Dynamic,true> SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize)
|
||||
typename SparseMatrixBase<Derived>::InnerVectorsReturnType
|
||||
SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize)
|
||||
{
|
||||
return Block<Derived,Dynamic,Dynamic,true>(derived(),
|
||||
IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart,
|
||||
|
|
@ -367,7 +403,8 @@ Block<Derived,Dynamic,Dynamic,true> SparseMatrixBase<Derived>::innerVectors(Inde
|
|||
* is col-major (resp. row-major). Read-only.
|
||||
*/
|
||||
template<typename Derived>
|
||||
const Block<const Derived,Dynamic,Dynamic,true> SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize) const
|
||||
const typename SparseMatrixBase<Derived>::ConstInnerVectorsReturnType
|
||||
SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize) const
|
||||
{
|
||||
return Block<const Derived,Dynamic,Dynamic,true>(derived(),
|
||||
IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart,
|
||||
|
|
@ -394,8 +431,8 @@ public:
|
|||
: m_matrix(xpr),
|
||||
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
|
||||
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
|
||||
m_blockRows(xpr.rows()),
|
||||
m_blockCols(xpr.cols())
|
||||
m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
|
||||
m_blockCols(BlockCols==1 ? 1 : xpr.cols())
|
||||
{}
|
||||
|
||||
/** Dynamic-size constructor
|
||||
|
|
@ -497,3 +534,4 @@ public:
|
|||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_BLOCK_H
|
||||
|
||||
|
|
|
|||
|
|
@ -314,10 +314,10 @@ SparseMatrixBase<Derived>::operator+=(const SparseMatrixBase<OtherDerived>& othe
|
|||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
|
||||
EIGEN_STRONG_INLINE const typename SparseMatrixBase<Derived>::template CwiseProductDenseReturnType<OtherDerived>::Type
|
||||
SparseMatrixBase<Derived>::cwiseProduct(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE(derived(), other.derived());
|
||||
return typename CwiseProductDenseReturnType<OtherDerived>::Type(derived(), other.derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue