Reformatted with new style file, renamed some derivatives to Dcal, Dpose, Dpoint etc. Small edit to not compute Dcal if not asked.

release/4.3a0
Frank Dellaert 2013-10-12 05:17:01 +00:00
parent 71466e8476
commit fa140cb0a3
1 changed files with 473 additions and 433 deletions

View File

@ -31,30 +31,35 @@
namespace gtsam {
/**
/**
* A pinhole camera class that has a Pose3 and a Calibration.
* @addtogroup geometry
* \nosubgrouping
*/
template <typename Calibration>
class PinholeCamera : public DerivedValue<PinholeCamera<Calibration> > {
private:
template<typename Calibration>
class PinholeCamera: public DerivedValue<PinholeCamera<Calibration> > {
private:
Pose3 pose_;
Calibration K_;
public:
public:
/// @name Standard Constructors
/// @{
/** default constructor */
PinholeCamera() {}
PinholeCamera() {
}
/** constructor with pose */
explicit PinholeCamera(const Pose3& pose):pose_(pose){}
explicit PinholeCamera(const Pose3& pose) :
pose_(pose) {
}
/** constructor with pose and calibration */
PinholeCamera(const Pose3& pose, const Calibration& K):pose_(pose),K_(K) {}
PinholeCamera(const Pose3& pose, const Calibration& K) :
pose_(pose), K_(K) {
}
/// @}
/// @name Named Constructors
@ -67,7 +72,8 @@ namespace gtsam {
* (theta 0 = looking in direction of positive X axis)
* @param height camera height
*/
static PinholeCamera Level(const Calibration &K, const Pose2& pose2, double height) {
static PinholeCamera Level(const Calibration &K, const Pose2& pose2,
double height) {
const double st = sin(pose2.theta()), ct = cos(pose2.theta());
const Point3 x(st, -ct, 0), y(0, 0, -1), z(ct, st, 0);
const Rot3 wRc(x, y, z);
@ -90,13 +96,14 @@ namespace gtsam {
* doesn't need to be on the image plane nor orthogonal to the viewing axis
* @param K optional calibration parameter
*/
static PinholeCamera Lookat(const Point3& eye, const Point3& target, const Point3& upVector, const Calibration& K = Calibration()) {
Point3 zc = target-eye;
zc = zc/zc.norm();
static PinholeCamera Lookat(const Point3& eye, const Point3& target,
const Point3& upVector, const Calibration& K = Calibration()) {
Point3 zc = target - eye;
zc = zc / zc.norm();
Point3 xc = (-upVector).cross(zc); // minus upVector since yc is pointing down
xc = xc/xc.norm();
xc = xc / xc.norm();
Point3 yc = zc.cross(xc);
Pose3 pose3(Rot3(xc,yc,zc), eye);
Pose3 pose3(Rot3(xc, yc, zc), eye);
return PinholeCamera(pose3, K);
}
@ -120,34 +127,43 @@ namespace gtsam {
/// @{
/// assert equality up to a tolerance
bool equals (const PinholeCamera &camera, double tol = 1e-9) const {
return pose_.equals(camera.pose(), tol) &&
K_.equals(camera.calibration(), tol) ;
bool equals(const PinholeCamera &camera, double tol = 1e-9) const {
return pose_.equals(camera.pose(), tol)
&& K_.equals(camera.calibration(), tol);
}
/// print
void print(const std::string& s = "PinholeCamera") const {
pose_.print(s+".pose");
K_.print(s+".calibration");
pose_.print(s + ".pose");
K_.print(s + ".calibration");
}
/// @}
/// @name Standard Interface
/// @{
virtual ~PinholeCamera() {}
virtual ~PinholeCamera() {
}
/// return pose
inline Pose3& pose() { return pose_; }
inline Pose3& pose() {
return pose_;
}
/// return pose
inline const Pose3& pose() const { return pose_; }
inline const Pose3& pose() const {
return pose_;
}
/// return calibration
inline Calibration& calibration() { return K_; }
inline Calibration& calibration() {
return K_;
}
/// return calibration
inline const Calibration& calibration() const { return K_; }
inline const Calibration& calibration() const {
return K_;
}
/// @}
/// @name Group ?? Frank says this might not make sense
@ -155,17 +171,19 @@ namespace gtsam {
/// compose two cameras: TODO Frank says this might not make sense
inline const PinholeCamera compose(const PinholeCamera &c,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
PinholeCamera result( pose_.compose(c.pose(), H1, H2), K_ );
if(H1) {
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
boost::none) const {
PinholeCamera result(pose_.compose(c.pose(), H1, H2), K_);
if (H1) {
H1->conservativeResize(Dim(), Dim());
H1->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),Calibration::Dim());
H1->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),
Calibration::Dim());
H1->bottomRows(Calibration::Dim()) = zeros(Calibration::Dim(), Dim());
}
if(H2) {
if (H2) {
H2->conservativeResize(Dim(), Dim());
H2->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),Calibration::Dim());
H2->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),
Calibration::Dim());
H2->bottomRows(Calibration::Dim()) = zeros(Calibration::Dim(), Dim());
}
return result;
@ -173,28 +191,32 @@ namespace gtsam {
/// between two cameras: TODO Frank says this might not make sense
inline const PinholeCamera between(const PinholeCamera& c,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
PinholeCamera result( pose_.between(c.pose(), H1, H2), K_ );
if(H1) {
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
boost::none) const {
PinholeCamera result(pose_.between(c.pose(), H1, H2), K_);
if (H1) {
H1->conservativeResize(Dim(), Dim());
H1->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),Calibration::Dim());
H1->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),
Calibration::Dim());
H1->bottomRows(Calibration::Dim()) = zeros(Calibration::Dim(), Dim());
}
if(H2) {
if (H2) {
H2->conservativeResize(Dim(), Dim());
H2->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),Calibration::Dim());
H2->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),
Calibration::Dim());
H2->bottomRows(Calibration::Dim()) = zeros(Calibration::Dim(), Dim());
}
return result;
}
/// inverse camera: TODO Frank says this might not make sense
inline const PinholeCamera inverse(boost::optional<Matrix&> H1=boost::none) const {
PinholeCamera result( pose_.inverse(H1), K_ );
if(H1) {
inline const PinholeCamera inverse(
boost::optional<Matrix&> H1 = boost::none) const {
PinholeCamera result(pose_.inverse(H1), K_);
if (H1) {
H1->conservativeResize(Dim(), Dim());
H1->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),Calibration::Dim());
H1->topRightCorner(Pose3::Dim(), Calibration::Dim()) = zeros(Pose3::Dim(),
Calibration::Dim());
H1->bottomRows(Calibration::Dim()) = zeros(Calibration::Dim(), Dim());
}
return result;
@ -202,7 +224,7 @@ namespace gtsam {
/// compose two cameras: TODO Frank says this might not make sense
inline const PinholeCamera compose(const Pose3 &c) const {
return PinholeCamera( pose_.compose(c), K_ );
return PinholeCamera(pose_.compose(c), K_);
}
/// @}
@ -211,26 +233,31 @@ namespace gtsam {
/// move a cameras according to d
PinholeCamera retract(const Vector& d) const {
if ((size_t) d.size() == pose_.dim() )
return PinholeCamera(pose().retract(d), calibration()) ;
if ((size_t) d.size() == pose_.dim())
return PinholeCamera(pose().retract(d), calibration());
else
return PinholeCamera(pose().retract(d.head(pose().dim())),
calibration().retract(d.tail(calibration().dim()))) ;
calibration().retract(d.tail(calibration().dim())));
}
/// return canonical coordinate
Vector localCoordinates(const PinholeCamera& T2) const {
Vector d(dim());
d.head(pose().dim()) = pose().localCoordinates(T2.pose());
d.tail(calibration().dim()) = calibration().localCoordinates(T2.calibration());
d.tail(calibration().dim()) = calibration().localCoordinates(
T2.calibration());
return d;
}
/// Manifold dimension
inline size_t dim() const { return pose_.dim() + K_.dim(); }
inline size_t dim() const {
return pose_.dim() + K_.dim();
}
/// Manifold dimension
inline static size_t Dim() { return Pose3::Dim() + Calibration::Dim(); }
inline static size_t Dim() {
return Pose3::Dim() + Calibration::Dim();
}
/// @}
/// @name Transformations and measurement functions
@ -239,13 +266,14 @@ namespace gtsam {
/**
* projects a 3-dimensional point in camera coordinates into the
* camera and returns a 2-dimensional point, no calibration applied
* With optional 2by3 derivative
* @param P A point in camera coordinates
* @param Dpoint is the 2*3 Jacobian w.r.t. P
*/
inline static Point2 project_to_camera(const Point3& P,
boost::optional<Matrix&> H1 = boost::none){
if (H1) {
boost::optional<Matrix&> Dpoint = boost::none) {
if (Dpoint) {
double d = 1.0 / P.z(), d2 = d * d;
*H1 = Matrix_(2, 3, d, 0.0, -P.x() * d2, 0.0, d, -P.y() * d2);
*Dpoint = Matrix_(2, 3, d, 0.0, -P.x() * d2, 0.0, d, -P.y() * d2);
}
return Point2(P.x() / P.z(), P.y() / P.z());
}
@ -253,139 +281,145 @@ namespace gtsam {
/**
* projects a 3-dimensional point at infinity (direction-only) in camera coordinates into the
* camera and returns a 2-dimensional point, no calibration applied
* With optional 2by3 derivative
* TODO: Frank says: this function seems to be identical as the above
* @param P A point in camera coordinates
* @param Dpoint is the 2*3 Jacobian w.r.t. P
*/
inline static Point2 projectPointAtInfinityToCamera(const Point3& P,
boost::optional<Matrix&> H1 = boost::none){
if (H1) {
boost::optional<Matrix&> Dpoint = boost::none) {
if (Dpoint) {
double d = 1.0 / P.z(), d2 = d * d;
*H1 = Matrix_(2, 3, d, 0.0, -P.x() * d2, 0.0, d, -P.y() * d2);
*Dpoint = Matrix_(2, 3, d, 0.0, -P.x() * d2, 0.0, d, -P.y() * d2);
}
return Point2(P.x() / P.z(), P.y() / P.z());
}
/// Project a point into the image and check depth
inline std::pair<Point2,bool> projectSafe(const Point3& pw) const {
const Point3 pc = pose_.transform_to(pw) ;
const Point2 pn = project_to_camera(pc) ;
return std::make_pair(K_.uncalibrate(pn), pc.z()>0);
inline std::pair<Point2, bool> projectSafe(const Point3& pw) const {
const Point3 pc = pose_.transform_to(pw);
const Point2 pn = project_to_camera(pc);
return std::make_pair(K_.uncalibrate(pn), pc.z() > 0);
}
/** project a point from world coordinate to the image
* @param pw is a point in the world coordinate
* @param H1 is the jacobian w.r.t. pose3
* @param H2 is the jacobian w.r.t. point3
* @param H3 is the jacobian w.r.t. calibration
* @param pw is a point in world coordinates
* @param Dpose is the Jacobian w.r.t. pose3
* @param Dpoint is the Jacobian w.r.t. point3
* @param Dcal is the Jacobian w.r.t. calibration
*/
inline Point2 project(const Point3& pw,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const {
inline Point2 project(
const Point3& pw, //
boost::optional<Matrix&> Dpose = boost::none,
boost::optional<Matrix&> Dpoint = boost::none,
boost::optional<Matrix&> Dcal = boost::none) const {
if (!H1 && !H2 && !H3) {
const Point3 pc = pose_.transform_to(pw) ;
if ( pc.z() <= 0 ) throw CheiralityException();
const Point2 pn = project_to_camera(pc) ;
if (!Dpose && !Dpoint && !Dcal) {
const Point3 pc = pose_.transform_to(pw);
if (pc.z() <= 0)
throw CheiralityException();
const Point2 pn = project_to_camera(pc);
return K_.uncalibrate(pn);
}
// world to camera coordinate
Matrix Hc1 /* 3*6 */, Hc2 /* 3*3 */ ;
const Point3 pc = pose_.transform_to(pw, Hc1, Hc2) ;
if( pc.z() <= 0 ) throw CheiralityException();
Matrix Dpc_pose /* 3*6 */, Dpc_point /* 3*3 */;
const Point3 pc = pose_.transform_to(pw, Dpc_pose, Dpc_point);
if (pc.z() <= 0)
throw CheiralityException();
// camera to normalized image coordinate
Matrix Hn; // 2*3
const Point2 pn = project_to_camera(pc, Hn) ;
Matrix Dpn_pc; // 2*3
const Point2 pn = project_to_camera(pc, Dpn_pc);
// uncalibration
Matrix Hk, Hi; // 2*2
const Point2 pi = K_.uncalibrate(pn, Hk, Hi);
Matrix Dpi_pn; // 2*2
const Point2 pi = K_.uncalibrate(pn, Dcal, Dpi_pn);
// chain the jacobian matrices
const Matrix tmp = Hi*Hn ;
if (H1) *H1 = tmp * Hc1 ;
if (H2) *H2 = tmp * Hc2 ;
if (H3) *H3 = Hk;
// chain the Jacobian matrices
const Matrix Dpi_pc = Dpi_pn * Dpn_pc;
if (Dpose)
*Dpose = Dpi_pc * Dpc_pose;
if (Dpoint)
*Dpoint = Dpi_pc * Dpc_point;
return pi;
}
/** project a point at infinity from world coordinate to the image
* @param pw is a point in the world coordinate (it is pw = lambda*[pw_x pw_y pw_z] with lambda->inf)
* @param H1 is the jacobian w.r.t. pose3
* @param H2 is the jacobian w.r.t. point3
* @param H3 is the jacobian w.r.t. calibration
* @param Dpose is the Jacobian w.r.t. pose3
* @param Dpoint is the Jacobian w.r.t. point3
* @param Dcal is the Jacobian w.r.t. calibration
*/
inline Point2 projectPointAtInfinity(const Point3& pw,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const {
inline Point2 projectPointAtInfinity(
const Point3& pw, //
boost::optional<Matrix&> Dpose = boost::none,
boost::optional<Matrix&> Dpoint = boost::none,
boost::optional<Matrix&> Dcal = boost::none) const {
if (!H1 && !H2 && !H3) {
const Point3 pc = pose_.rotation().unrotate(pw) ;
// if ( pc.z() <= 0 ) throw CheiralityException(); // this does not make sense for point at infinity
const Point2 pn = projectPointAtInfinityToCamera(pc) ;
if (!Dpose && !Dpoint && !Dcal) {
const Point3 pc = pose_.rotation().unrotate(pw);
const Point2 pn = projectPointAtInfinityToCamera(pc);
return K_.uncalibrate(pn);
}
// world to camera coordinate
Matrix Hc1_rot /* 3*3 */, Hc2 /* 3*3 */ ;
const Point3 pc = pose_.rotation().unrotate(pw, Hc1_rot, Hc2) ;
// if( pc.z() <= 0 ) throw CheiralityException(); // this does not make sense for point at infinity
Matrix Dpc_rot /* 3*3 */, Dpc_point /* 3*3 */;
const Point3 pc = pose_.rotation().unrotate(pw, Dpc_rot, Dpc_point);
Matrix Hc1 = Matrix::Zero(3,6);
Hc1.block(0,0,3,3) = Hc1_rot;
Matrix Dpc_pose = Matrix::Zero(3, 6);
Dpc_pose.block(0, 0, 3, 3) = Dpc_rot;
// camera to normalized image coordinate
Matrix Hn; // 2*3
const Point2 pn = projectPointAtInfinityToCamera(pc, Hn) ;
Matrix Dpn_pc; // 2*3
const Point2 pn = projectPointAtInfinityToCamera(pc, Dpn_pc);
// uncalibration
Matrix Hk, Hi; // 2*2
// Matrix H23 = Matrix::Zero(3,2);
// H23.block(0,0,2,2) = Matrix::Identity(2,2);
const Point2 pi = K_.uncalibrate(pn, Hk, Hi);
Matrix Dpi_pn; // 2*2
const Point2 pi = K_.uncalibrate(pn, Dcal, Dpi_pn);
// chain the jacobian matrices
const Matrix tmp = Hi*Hn;
if (H1) *H1 = tmp * Hc1;
if (H2) *H2 = (tmp * Hc2).block(0,0,3,2);
if (H3) *H3 = Hk;
// chain the Jacobian matrices
const Matrix Dpi_pc = Dpi_pn * Dpn_pc;
if (Dpose)
*Dpose = Dpi_pc * Dpc_pose;
if (Dpoint)
*Dpoint = (Dpi_pc * Dpc_point).block(0, 0, 3, 2);
return pi;
}
/** project a point from world coordinate to the image
* @param pw is a point in the world coordinate
* @param H1 is the jacobian w.r.t. [pose3 calibration]
* @param H2 is the jacobian w.r.t. point3
* @param Dcamera is the Jacobian w.r.t. [pose3 calibration]
* @param Dpoint is the Jacobian w.r.t. point3
*/
inline Point2 project2(const Point3& pw,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const {
inline Point2 project2(
const Point3& pw, //
boost::optional<Matrix&> Dcamera = boost::none,
boost::optional<Matrix&> Dpoint = boost::none) const {
if (!H1 && !H2) {
const Point3 pc = pose_.transform_to(pw) ;
if ( pc.z() <= 0 ) throw CheiralityException();
const Point2 pn = project_to_camera(pc) ;
if (!Dcamera && !Dpoint) {
const Point3 pc = pose_.transform_to(pw);
if (pc.z() <= 0)
throw CheiralityException();
const Point2 pn = project_to_camera(pc);
return K_.uncalibrate(pn);
}
Matrix Htmp1, Htmp2, Htmp3;
const Point2 pi = this->project(pw, Htmp1, Htmp2, Htmp3);
if (H1) {
*H1 = Matrix(2, this->dim());
H1->leftCols(pose().dim()) = Htmp1 ; // jacobian wrt pose3
H1->rightCols(calibration().dim()) = Htmp3 ; // jacobian wrt calib
Matrix Dpose, Dp, Dcal;
const Point2 pi = this->project(pw, Dpose, Dp, Dcal);
if (Dcamera) {
*Dcamera = Matrix(2, this->dim());
Dcamera->leftCols(pose().dim()) = Dpose; // Jacobian wrt pose3
Dcamera->rightCols(calibration().dim()) = Dcal; // Jacobian wrt calib
}
if (H2) *H2 = Htmp2;
if (Dpoint)
*Dpoint = Dp;
return pi;
}
/// backproject a 2-dimensional point to a 3-dimensional point at given depth
inline Point3 backproject(const Point2& p, double depth) const {
const Point2 pn = K_.calibrate(p);
const Point3 pc(pn.x()*depth, pn.y()*depth, depth);
const Point3 pc(pn.x() * depth, pn.y() * depth, depth);
return pose_.transform_from(pc);
}
@ -399,17 +433,18 @@ namespace gtsam {
/**
* Calculate range to a landmark
* @param point 3D location of landmark
* @param H1 the optionally computed Jacobian with respect to pose
* @param H2 the optionally computed Jacobian with respect to the landmark
* @param Dpose the optionally computed Jacobian with respect to pose
* @param Dpoint the optionally computed Jacobian with respect to the landmark
* @return range (double)
*/
double range(const Point3& point,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
double result = pose_.range(point, H1, H2);
if(H1) {
double range(
const Point3& point, //
boost::optional<Matrix&> Dpose = boost::none,
boost::optional<Matrix&> Dpoint = boost::none) const {
double result = pose_.range(point, Dpose, Dpoint);
if (Dpose) {
// Add columns of zeros to Jacobian for calibration
Matrix& H1r(*H1);
Matrix& H1r(*Dpose);
H1r.conservativeResize(Eigen::NoChange, pose_.dim() + K_.dim());
H1r.block(0, pose_.dim(), 1, K_.dim()) = Matrix::Zero(1, K_.dim());
}
@ -419,17 +454,18 @@ namespace gtsam {
/**
* Calculate range to another pose
* @param pose Other SO(3) pose
* @param H1 the optionally computed Jacobian with respect to pose
* @param H2 the optionally computed Jacobian with respect to the landmark
* @param Dpose the optionally computed Jacobian with respect to pose
* @param Dpose2 the optionally computed Jacobian with respect to the other pose
* @return range (double)
*/
double range(const Pose3& pose,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
double result = pose_.range(pose, H1, H2);
if(H1) {
double range(
const Pose3& pose, //
boost::optional<Matrix&> Dpose = boost::none,
boost::optional<Matrix&> Dpose2 = boost::none) const {
double result = pose_.range(pose, Dpose, Dpose2);
if (Dpose) {
// Add columns of zeros to Jacobian for calibration
Matrix& H1r(*H1);
Matrix& H1r(*Dpose);
H1r.conservativeResize(Eigen::NoChange, pose_.dim() + K_.dim());
H1r.block(0, pose_.dim(), 1, K_.dim()) = Matrix::Zero(1, K_.dim());
}
@ -439,26 +475,29 @@ namespace gtsam {
/**
* Calculate range to another camera
* @param camera Other camera
* @param H1 the optionally computed Jacobian with respect to pose
* @param H2 the optionally computed Jacobian with respect to the landmark
* @param Dpose the optionally computed Jacobian with respect to pose
* @param Dother the optionally computed Jacobian with respect to the other camera
* @return range (double)
*/
template<class CalibrationB>
double range(const PinholeCamera<CalibrationB>& camera,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
double result = pose_.range(camera.pose_, H1, H2);
if(H1) {
double range(
const PinholeCamera<CalibrationB>& camera, //
boost::optional<Matrix&> Dpose = boost::none,
boost::optional<Matrix&> Dother = boost::none) const {
double result = pose_.range(camera.pose_, Dpose, Dother);
if (Dpose) {
// Add columns of zeros to Jacobian for calibration
Matrix& H1r(*H1);
Matrix& H1r(*Dpose);
H1r.conservativeResize(Eigen::NoChange, pose_.dim() + K_.dim());
H1r.block(0, pose_.dim(), 1, K_.dim()) = Matrix::Zero(1, K_.dim());
}
if(H2) {
if (Dother) {
// Add columns of zeros to Jacobian for calibration
Matrix& H2r(*H2);
H2r.conservativeResize(Eigen::NoChange, camera.pose().dim() + camera.calibration().dim());
H2r.block(0, camera.pose().dim(), 1, camera.calibration().dim()) = Matrix::Zero(1, camera.calibration().dim());
Matrix& H2r(*Dother);
H2r.conservativeResize(Eigen::NoChange,
camera.pose().dim() + camera.calibration().dim());
H2r.block(0, camera.pose().dim(), 1, camera.calibration().dim()) =
Matrix::Zero(1, camera.calibration().dim());
}
return result;
}
@ -466,14 +505,16 @@ namespace gtsam {
/**
* Calculate range to another camera
* @param camera Other camera
* @param H1 the optionally computed Jacobian with respect to pose
* @param H2 the optionally computed Jacobian with respect to the landmark
* @param Dpose the optionally computed Jacobian with respect to pose
* @param Dother the optionally computed Jacobian with respect to the other camera
* @return range (double)
*/
double range(const CalibratedCamera& camera,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
return pose_.range(camera.pose_, H1, H2); }
double range(
const CalibratedCamera& camera, //
boost::optional<Matrix&> Dpose = boost::none,
boost::optional<Matrix&> Dother = boost::none) const {
return pose_.range(camera.pose_, Dpose, Dother);
}
private:
@ -490,5 +531,4 @@ private:
ar & BOOST_SERIALIZATION_NVP(K_);
}
/// @}
};
}
};}