Euler integration
parent
a6cc7ef2dc
commit
f9d247311f
|
@ -281,13 +281,13 @@ If we know
|
|||
an be written as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\Skew{\omega^{b}}=R(t)^{T}W(X,t)
|
||||
\Skew{\omega^{b}(t)}=R(t)^{T}W(X,t)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\Skew{\omega^{b}}\in so(3)$
|
||||
\begin_inset Formula $\Skew{\omega^{b}(t)}\in so(3)$
|
||||
\end_inset
|
||||
|
||||
is the skew-symmetric matrix corresponding to
|
||||
|
@ -297,7 +297,7 @@ where
|
|||
, and hence the resulting exact vector field is
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
X'(t)=\left[W(X,t),V(t),A(X,t)\right]=\left[R(t)\Skew{\omega^{b}},V(t),g+R(t)a^{b}(t)\right]\label{eq:bodyField}
|
||||
X'(t)=\left[W(X,t),V(t),A(X,t)\right]=\left[R(t)\Skew{\omega^{b}(t)},V(t),g+R(t)a^{b}(t)\right]\label{eq:bodyField}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -902,7 +902,7 @@ reference "eq:bodyField"
|
|||
, we have exact integration iff
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left[R(t)\Skew{H(\theta)\theta'(t)},R_{0}\, p'(t),R_{0}\, v'(t)\right]=\left[R(t)\Skew{\omega^{b}},V(t),g+R(t)a^{b}(t)\right]
|
||||
\left[R(t)\Skew{H(\theta)\theta'(t)},R_{0}\, p'(t),R_{0}\, v'(t)\right]=\left[R(t)\Skew{\omega^{b}(t)},V(t),g+R(t)a^{b}(t)\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -923,7 +923,7 @@ Or, as another way to state this, if we solve the differential equations
|
|||
such that
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\dot{\theta}(t) & = & H(\theta)^{-1}\,\omega^{b}\\
|
||||
\dot{\theta}(t) & = & H(\theta)^{-1}\,\omega^{b}(t)\\
|
||||
\dot{p}(t) & = & R_{0}^{T}\, V_{0}+v(t)\\
|
||||
\dot{v}(t) & = & R_{0}^{T}\, g+R_{b}^{0}(t)a^{b}(t)
|
||||
\end{eqnarray*}
|
||||
|
@ -1033,10 +1033,10 @@ p_{g}(t) & = & R_{0}^{T}\frac{gt^{2}}{2}
|
|||
\end_inset
|
||||
|
||||
The recipe for the IMU factor is then, in summary.
|
||||
Solve the ordinary differential equation
|
||||
Solve the ordinary differential equations
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\dot{\theta}(t) & = & H(\theta)^{-1}\,\omega^{b}\\
|
||||
\dot{\theta}(t) & = & H(\theta)^{-1}\,\omega^{b}(t)\\
|
||||
\dot{p}_{v}(t) & = & v_{a}(t)\\
|
||||
\dot{v}_{a}(t) & = & R_{b}^{0}(t)a^{b}(t)
|
||||
\end{eqnarray*}
|
||||
|
@ -1079,6 +1079,36 @@ X_{j}=\mathcal{R}_{X_{j}}(\zeta(t_{ij}))=\left\{ \Phi_{R_{0}}\left(\theta(t_{ij}
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection*
|
||||
A Simple Euler Scheme
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
To solve the differential equation we can use a simple Euler scheme:
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\theta_{k+1}=\theta_{k}+\dot{\theta}(t_{k})\Delta_{t} & = & \theta_{k}+H(\theta_{k})^{-1}\,\omega_{k}^{b}\Delta_{t}\\
|
||||
p_{k+1}=p_{k}+\dot{p}_{v}(t_{k})\Delta_{t} & = & p_{k}+v_{k}\Delta_{t}\\
|
||||
v_{k+1}=v_{k}+\dot{v}_{a}(t_{k})\Delta_{t} & = & v_{k}+\exp\left(\theta_{k}\right)a_{k}^{b}\Delta_{t}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\theta_{k}\define\theta(t_{k})$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $p_{k}\define p_{v}(t_{k})$
|
||||
\end_inset
|
||||
|
||||
, and
|
||||
\begin_inset Formula $v_{k}\define v_{a}(t_{k})$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Old Stuff:
|
||||
\end_layout
|
||||
|
|
Loading…
Reference in New Issue