Euler integration

release/4.3a0
Frank Dellaert 2015-12-21 12:55:01 -08:00
parent a6cc7ef2dc
commit f9d247311f
1 changed files with 37 additions and 7 deletions

View File

@ -281,13 +281,13 @@ If we know
an be written as an be written as
\begin_inset Formula \begin_inset Formula
\[ \[
\Skew{\omega^{b}}=R(t)^{T}W(X,t) \Skew{\omega^{b}(t)}=R(t)^{T}W(X,t)
\] \]
\end_inset \end_inset
where where
\begin_inset Formula $\Skew{\omega^{b}}\in so(3)$ \begin_inset Formula $\Skew{\omega^{b}(t)}\in so(3)$
\end_inset \end_inset
is the skew-symmetric matrix corresponding to is the skew-symmetric matrix corresponding to
@ -297,7 +297,7 @@ where
, and hence the resulting exact vector field is , and hence the resulting exact vector field is
\begin_inset Formula \begin_inset Formula
\begin{equation} \begin{equation}
X'(t)=\left[W(X,t),V(t),A(X,t)\right]=\left[R(t)\Skew{\omega^{b}},V(t),g+R(t)a^{b}(t)\right]\label{eq:bodyField} X'(t)=\left[W(X,t),V(t),A(X,t)\right]=\left[R(t)\Skew{\omega^{b}(t)},V(t),g+R(t)a^{b}(t)\right]\label{eq:bodyField}
\end{equation} \end{equation}
\end_inset \end_inset
@ -902,7 +902,7 @@ reference "eq:bodyField"
, we have exact integration iff , we have exact integration iff
\begin_inset Formula \begin_inset Formula
\[ \[
\left[R(t)\Skew{H(\theta)\theta'(t)},R_{0}\, p'(t),R_{0}\, v'(t)\right]=\left[R(t)\Skew{\omega^{b}},V(t),g+R(t)a^{b}(t)\right] \left[R(t)\Skew{H(\theta)\theta'(t)},R_{0}\, p'(t),R_{0}\, v'(t)\right]=\left[R(t)\Skew{\omega^{b}(t)},V(t),g+R(t)a^{b}(t)\right]
\] \]
\end_inset \end_inset
@ -923,7 +923,7 @@ Or, as another way to state this, if we solve the differential equations
such that such that
\begin_inset Formula \begin_inset Formula
\begin{eqnarray*} \begin{eqnarray*}
\dot{\theta}(t) & = & H(\theta)^{-1}\,\omega^{b}\\ \dot{\theta}(t) & = & H(\theta)^{-1}\,\omega^{b}(t)\\
\dot{p}(t) & = & R_{0}^{T}\, V_{0}+v(t)\\ \dot{p}(t) & = & R_{0}^{T}\, V_{0}+v(t)\\
\dot{v}(t) & = & R_{0}^{T}\, g+R_{b}^{0}(t)a^{b}(t) \dot{v}(t) & = & R_{0}^{T}\, g+R_{b}^{0}(t)a^{b}(t)
\end{eqnarray*} \end{eqnarray*}
@ -1033,10 +1033,10 @@ p_{g}(t) & = & R_{0}^{T}\frac{gt^{2}}{2}
\end_inset \end_inset
The recipe for the IMU factor is then, in summary. The recipe for the IMU factor is then, in summary.
Solve the ordinary differential equation Solve the ordinary differential equations
\begin_inset Formula \begin_inset Formula
\begin{eqnarray*} \begin{eqnarray*}
\dot{\theta}(t) & = & H(\theta)^{-1}\,\omega^{b}\\ \dot{\theta}(t) & = & H(\theta)^{-1}\,\omega^{b}(t)\\
\dot{p}_{v}(t) & = & v_{a}(t)\\ \dot{p}_{v}(t) & = & v_{a}(t)\\
\dot{v}_{a}(t) & = & R_{b}^{0}(t)a^{b}(t) \dot{v}_{a}(t) & = & R_{b}^{0}(t)a^{b}(t)
\end{eqnarray*} \end{eqnarray*}
@ -1079,6 +1079,36 @@ X_{j}=\mathcal{R}_{X_{j}}(\zeta(t_{ij}))=\left\{ \Phi_{R_{0}}\left(\theta(t_{ij}
\end_layout \end_layout
\begin_layout Subsubsection*
A Simple Euler Scheme
\end_layout
\begin_layout Standard
To solve the differential equation we can use a simple Euler scheme:
\begin_inset Formula
\begin{eqnarray*}
\theta_{k+1}=\theta_{k}+\dot{\theta}(t_{k})\Delta_{t} & = & \theta_{k}+H(\theta_{k})^{-1}\,\omega_{k}^{b}\Delta_{t}\\
p_{k+1}=p_{k}+\dot{p}_{v}(t_{k})\Delta_{t} & = & p_{k}+v_{k}\Delta_{t}\\
v_{k+1}=v_{k}+\dot{v}_{a}(t_{k})\Delta_{t} & = & v_{k}+\exp\left(\theta_{k}\right)a_{k}^{b}\Delta_{t}
\end{eqnarray*}
\end_inset
where
\begin_inset Formula $\theta_{k}\define\theta(t_{k})$
\end_inset
,
\begin_inset Formula $p_{k}\define p_{v}(t_{k})$
\end_inset
, and
\begin_inset Formula $v_{k}\define v_{a}(t_{k})$
\end_inset
.
\end_layout
\begin_layout Section \begin_layout Section
Old Stuff: Old Stuff:
\end_layout \end_layout