bug fix in wildfire alg; more stats
parent
e3de72bd05
commit
f8cf500aff
|
@ -19,7 +19,7 @@ using namespace boost::assign;
|
|||
#include <gtsam/inference/ISAM2.h>
|
||||
|
||||
|
||||
#if 1 // timing
|
||||
#if 1 // timing - note: adds some time when applied in inner loops
|
||||
#include <sys/time.h>
|
||||
// simple class for accumulating execution timing information by name
|
||||
class Timing {
|
||||
|
@ -236,10 +236,10 @@ namespace gtsam {
|
|||
// 1. Remove top of Bayes tree and convert to a factor graph:
|
||||
// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
|
||||
// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
|
||||
const list<Symbol> newKeys = newFactors.keys();
|
||||
const list<Symbol> markedKeys = newFactors.keys();
|
||||
Cliques orphans;
|
||||
BayesNet<GaussianConditional> affectedBayesNet;
|
||||
this->removeTop(newKeys, affectedBayesNet, orphans);
|
||||
this->removeTop(markedKeys, affectedBayesNet, orphans);
|
||||
|
||||
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
|
||||
// bug was here: we cannot reuse the original factors, because then the cached factors get messed up
|
||||
|
@ -258,16 +258,15 @@ namespace gtsam {
|
|||
list<Symbol> tmp = affectedBayesNet.ordering();
|
||||
affectedKeys.insert(tmp.begin(), tmp.end());
|
||||
|
||||
// Save number of affected variables
|
||||
lastAffectedVariableCount = affectedKeys.size();
|
||||
|
||||
FactorGraph<GaussianFactor> factors(*relinearizeAffectedFactors(affectedKeys)); // todo: no need to relinearize here, should have cached linearized factors
|
||||
|
||||
// Save number of affected factors
|
||||
lastAffectedMarkedCount = markedKeys.size();
|
||||
lastAffectedVariableCount = affectedKeys.size();
|
||||
lastAffectedFactorCount = factors.size();
|
||||
// output for generating figures
|
||||
|
||||
#ifdef PRINT_STATS
|
||||
cout << "linear: #newKeys: " << newKeys.size() << " #affectedVariables: " << affectedKeys.size()
|
||||
// output for generating figures
|
||||
cout << "linear: #markedKeys: " << markedKeys.size() << " #affectedVariables: " << affectedKeys.size()
|
||||
<< " #affectedFactors: " << factors.size() << " maxCliqueSize: " << maxClique
|
||||
<< " avgCliqueSize: " << avgClique << " #Cliques: " << numCliques << " nnzR: " << nnzR << endl;
|
||||
#endif
|
||||
|
@ -287,10 +286,10 @@ namespace gtsam {
|
|||
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm [alg:BayesTree])
|
||||
|
||||
// create an ordering for the new and contaminated factors
|
||||
// newKeys are passed in: those variables will be forced to the end in the ordering
|
||||
set<Symbol> newKeysSet;
|
||||
newKeysSet.insert(newKeys.begin(), newKeys.end());
|
||||
Ordering ordering = factors.getConstrainedOrdering(newKeysSet); // intelligent ordering
|
||||
// markedKeys are passed in: those variables will be forced to the end in the ordering
|
||||
set<Symbol> markedKeysSet;
|
||||
markedKeysSet.insert(markedKeys.begin(), markedKeys.end());
|
||||
Ordering ordering = factors.getConstrainedOrdering(markedKeysSet); // intelligent ordering
|
||||
// Ordering ordering = factors.getOrdering(); // original ordering, yields in bad performance
|
||||
|
||||
// eliminate into a Bayes net
|
||||
|
@ -401,7 +400,11 @@ namespace gtsam {
|
|||
factors = relinearizeAffectedFactors(affectedKeys);
|
||||
toc("nonlin_relin");
|
||||
|
||||
cout << "nonlinear: #marked: " << marked.size() << " #affected: " << affectedKeys.size() << " #factors: " << factors->size() << endl;
|
||||
lastNonlinearMarkedCount = marked.size();
|
||||
lastNonlinearAffectedVariableCount = affectedKeys.size();
|
||||
lastNonlinearAffectedFactorCount = factors->size();
|
||||
|
||||
// cout << "nonlinear: #marked: " << marked.size() << " #affected: " << affectedKeys.size() << " #factors: " << factors->size() << endl;
|
||||
|
||||
// add the cached intermediate results from the boundary of the orphans ...
|
||||
FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
|
||||
|
@ -438,6 +441,14 @@ namespace gtsam {
|
|||
const NonlinearFactorGraph<Config>& newFactors, const Config& newTheta,
|
||||
double wildfire_threshold, double relinearize_threshold, bool relinearize) {
|
||||
|
||||
lastAffectedVariableCount = 0;
|
||||
lastAffectedFactorCount = 0;
|
||||
lastAffectedCliqueCount = 0;
|
||||
lastAffectedMarkedCount = 0;
|
||||
lastNonlinearMarkedCount = 0;
|
||||
lastNonlinearAffectedVariableCount = 0;
|
||||
lastNonlinearAffectedFactorCount = 0;
|
||||
|
||||
tic("all");
|
||||
|
||||
tic("step1");
|
||||
|
@ -473,7 +484,7 @@ namespace gtsam {
|
|||
toc("step6");
|
||||
|
||||
// todo: not part of algorithm in paper: linearization point and delta_ do not fit... have to update delta again
|
||||
//todo delta_ = optimize2(*this, wildfire_threshold);
|
||||
delta_ = optimize2(*this, wildfire_threshold);
|
||||
|
||||
toc("all");
|
||||
|
||||
|
|
|
@ -79,6 +79,10 @@ namespace gtsam {
|
|||
size_t lastAffectedVariableCount;
|
||||
size_t lastAffectedFactorCount;
|
||||
size_t lastAffectedCliqueCount;
|
||||
size_t lastAffectedMarkedCount;
|
||||
size_t lastNonlinearMarkedCount;
|
||||
size_t lastNonlinearAffectedVariableCount;
|
||||
size_t lastNonlinearAffectedFactorCount;
|
||||
|
||||
private:
|
||||
|
||||
|
|
|
@ -18,38 +18,89 @@ template class ISAM2<GaussianConditional, planarSLAM::Config>;
|
|||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
void optimize2(const GaussianISAM2::sharedClique& clique, double threshold, VectorConfig& result) {
|
||||
void optimize2(const GaussianISAM2::sharedClique& clique, double threshold, set<Symbol>& changed, VectorConfig& result) {
|
||||
// if none of the variables in this clique (frontal and separator!) changed
|
||||
// significantly, then by the running intersection property, none of the
|
||||
// cliques in the children need to be processed
|
||||
bool process_children = false;
|
||||
|
||||
// parents are assumed to already be solved and available in result
|
||||
GaussianISAM2::Clique::const_reverse_iterator it;
|
||||
for (it = clique->rbegin(); it!=clique->rend(); it++) {
|
||||
GaussianConditional::shared_ptr cg = *it;
|
||||
Vector x = cg->solve(result); // Solve for that variable
|
||||
|
||||
// only solve if at least one of the separator variables changed
|
||||
// significantly, ie. is in the set "changed"
|
||||
bool found = true;
|
||||
if (cg->nrParents()>0) {
|
||||
found = false;
|
||||
BOOST_FOREACH(const Symbol& key, cg->parents()) {
|
||||
if (changed.find(key)!=changed.end()) {
|
||||
found = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (found) {
|
||||
// Solve for that variable
|
||||
Vector x = cg->solve(result);
|
||||
process_children = true;
|
||||
|
||||
// store result in partial solution
|
||||
result.insert(cg->key(), x);
|
||||
|
||||
// if change is above threshold, add to set of changed variables
|
||||
if (max(abs(x)) >= threshold) {
|
||||
changed.insert(cg->key());
|
||||
process_children = true;
|
||||
}
|
||||
result.insert(cg->key(), x); // store result in partial solution
|
||||
}
|
||||
}
|
||||
if (process_children) {
|
||||
BOOST_FOREACH(const GaussianISAM2::sharedClique& child, clique->children_) {
|
||||
optimize2(child, threshold, result);
|
||||
optimize2(child, threshold, changed, result);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// fast version without threshold
|
||||
void optimize2(const GaussianISAM2::sharedClique& clique, VectorConfig& result) {
|
||||
// parents are assumed to already be solved and available in result
|
||||
GaussianISAM2::Clique::const_reverse_iterator it;
|
||||
for (it = clique->rbegin(); it!=clique->rend(); it++) {
|
||||
GaussianConditional::shared_ptr cg = *it;
|
||||
Vector x = cg->solve(result);
|
||||
// store result in partial solution
|
||||
result.insert(cg->key(), x);
|
||||
}
|
||||
BOOST_FOREACH(const GaussianISAM2::sharedClique& child, clique->children_) {
|
||||
optimize2(child, result);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorConfig optimize2(const GaussianISAM2& bayesTree, double threshold) {
|
||||
VectorConfig result;
|
||||
set<Symbol> changed;
|
||||
// starting from the root, call optimize on each conditional
|
||||
optimize2(bayesTree.root(), threshold, result);
|
||||
if (threshold<=0.) {
|
||||
optimize2(bayesTree.root(), result);
|
||||
} else {
|
||||
optimize2(bayesTree.root(), threshold, changed, result);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorConfig optimize2(const GaussianISAM2_P& bayesTree, double threshold) {
|
||||
VectorConfig result;
|
||||
set<Symbol> changed;
|
||||
// starting from the root, call optimize on each conditional
|
||||
optimize2(bayesTree.root(), threshold, result);
|
||||
if (threshold<=0.) {
|
||||
optimize2(bayesTree.root(), result);
|
||||
} else {
|
||||
optimize2(bayesTree.root(), threshold, changed, result);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -64,7 +115,7 @@ void nnz_internal(const GaussianISAM2::sharedClique& clique, int& result) {
|
|||
dimSep += matrix_it->second.size2();
|
||||
}
|
||||
int dimR = cg->dim();
|
||||
result += (dimR+1)*dimR/2 + dimSep*dimR;
|
||||
result += ((dimR+1)*dimR)/2 + dimSep*dimR;
|
||||
}
|
||||
// traverse the children
|
||||
BOOST_FOREACH(const GaussianISAM2::sharedClique& child, clique->children_) {
|
||||
|
|
|
@ -18,9 +18,6 @@ namespace gtsam {
|
|||
|
||||
typedef ISAM2<GaussianConditional, simulated2D::Config> GaussianISAM2;
|
||||
|
||||
// recursively optimize this conditional and all subtrees
|
||||
void optimize2(const GaussianISAM2::sharedClique& clique, double threshold, VectorConfig& result);
|
||||
|
||||
// optimize the BayesTree, starting from the root
|
||||
VectorConfig optimize2(const GaussianISAM2& bayesTree, double threshold = 0.);
|
||||
|
||||
|
|
Loading…
Reference in New Issue