Made into class
parent
7d86b073e6
commit
f8af4a465d
|
@ -16,6 +16,9 @@
|
|||
* @date May 2019
|
||||
**/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cmath>
|
||||
#include <queue>
|
||||
#include <random>
|
||||
#include <stdexcept>
|
||||
|
@ -25,92 +28,110 @@
|
|||
namespace gtsam {
|
||||
/*
|
||||
* Fast sampling without replacement.
|
||||
* Example usage:
|
||||
* std::mt19937 rng(42);
|
||||
* WeightedSampler<std::mt19937> sampler(&rng);
|
||||
* auto samples = sampler.sampleWithoutReplacement(5, weights);
|
||||
*/
|
||||
template <class Engine>
|
||||
std::vector<size_t> sampleWithoutReplacement(Engine& rng, size_t s,
|
||||
std::vector<double> weights) {
|
||||
// Implementation adapted from paper at
|
||||
// https://www.ethz.ch/content/dam/ethz/special-interest/baug/ivt/ivt-dam/vpl/reports/1101-1200/ab1141.pdf
|
||||
const size_t n = weights.size();
|
||||
if (n < s) {
|
||||
throw std::runtime_error("s must be smaller than weights.size()");
|
||||
}
|
||||
template <class Engine = std::mt19937>
|
||||
class WeightedSampler {
|
||||
private:
|
||||
Engine* engine_; // random number generation engine
|
||||
|
||||
// Return empty array if s==0
|
||||
std::vector<size_t> result(s);
|
||||
if (s == 0) return result;
|
||||
public:
|
||||
/**
|
||||
* Construct from random number generation engine
|
||||
* We only store a pointer to it.
|
||||
*/
|
||||
explicit WeightedSampler(Engine* engine) : engine_(engine) {}
|
||||
|
||||
// Step 1: The first m items of V are inserted into reservoir
|
||||
// Step 2: For each item v_i ∈ reservoir: Calculate a key k_i = u_i^(1/w),
|
||||
// where u_i = random(0, 1)
|
||||
// (Modification: Calculate and store -log k_i = e_i / w where e_i = exp(1),
|
||||
// reservoir is a priority queue that pops the *maximum* elements)
|
||||
std::priority_queue<std::pair<double, size_t> > reservoir;
|
||||
std::vector<size_t> sampleWithoutReplacement(size_t numSamples,
|
||||
std::vector<double> weights) {
|
||||
// Implementation adapted from code accompanying paper at
|
||||
// https://www.ethz.ch/content/dam/ethz/special-interest/baug/ivt/ivt-dam/vpl/reports/1101-1200/ab1141.pdf
|
||||
const size_t n = weights.size();
|
||||
if (n < numSamples) {
|
||||
throw std::runtime_error(
|
||||
"numSamples must be smaller than weights.size()");
|
||||
}
|
||||
|
||||
static const double kexp1 = exp(1.0);
|
||||
for (auto iprob = weights.begin(); iprob != weights.begin() + s; ++iprob) {
|
||||
double k_i = kexp1 / *iprob;
|
||||
reservoir.push(std::make_pair(k_i, iprob - weights.begin() + 1));
|
||||
}
|
||||
// Return empty array if numSamples==0
|
||||
std::vector<size_t> result(numSamples);
|
||||
if (numSamples == 0) return result;
|
||||
|
||||
// Step 4: Repeat Steps 5–10 until the population is exhausted
|
||||
{
|
||||
// Step 3: The threshold T_w is the minimum key of reservoir
|
||||
// (Modification: This is now the logarithm)
|
||||
// Step 10: The new threshold T w is the new minimum key of reservoir
|
||||
const std::pair<double, size_t>& T_w = reservoir.top();
|
||||
// Step 1: The first m items of V are inserted into reservoir
|
||||
// Step 2: For each item v_i ∈ reservoir: Calculate a key k_i = u_i^(1/w),
|
||||
// where u_i = random(0, 1)
|
||||
// (Modification: Calculate and store -log k_i = e_i / w where e_i = exp(1),
|
||||
// reservoir is a priority queue that pops the *maximum* elements)
|
||||
std::priority_queue<std::pair<double, size_t> > reservoir;
|
||||
|
||||
// Incrementing iprob is part of Step 7
|
||||
for (auto iprob = weights.begin() + s; iprob != weights.end(); ++iprob) {
|
||||
// Step 5: Let r = random(0, 1) and X_w = log(r) / log(T_w)
|
||||
// (Modification: Use e = -exp(1) instead of log(r))
|
||||
double X_w = kexp1 / T_w.first;
|
||||
static const double kexp1 = std::exp(1.0);
|
||||
for (auto it = weights.begin(); it != weights.begin() + numSamples; ++it) {
|
||||
const double k_i = kexp1 / *it;
|
||||
reservoir.push(std::make_pair(k_i, it - weights.begin() + 1));
|
||||
}
|
||||
|
||||
// Step 6: From the current item v_c skip items until item v_i, such that:
|
||||
double w = 0.0;
|
||||
// Step 4: Repeat Steps 5–10 until the population is exhausted
|
||||
{
|
||||
// Step 3: The threshold T_w is the minimum key of reservoir
|
||||
// (Modification: This is now the logarithm)
|
||||
// Step 10: The new threshold T w is the new minimum key of reservoir
|
||||
const std::pair<double, size_t>& T_w = reservoir.top();
|
||||
|
||||
// Step 7: w_c + w_{c+1} + ··· + w_{i−1} < X_w <= w_c + w_{c+1} + ··· +
|
||||
// w_{i−1} + w_i
|
||||
for (; iprob != weights.end(); ++iprob) {
|
||||
w += *iprob;
|
||||
if (X_w <= w) break;
|
||||
// Incrementing it is part of Step 7
|
||||
for (auto it = weights.begin() + numSamples; it != weights.end(); ++it) {
|
||||
// Step 5: Let r = random(0, 1) and X_w = log(r) / log(T_w)
|
||||
// (Modification: Use e = -exp(1) instead of log(r))
|
||||
const double X_w = kexp1 / T_w.first;
|
||||
|
||||
// Step 6: From the current item v_c skip items until item v_i, such
|
||||
// that:
|
||||
double w = 0.0;
|
||||
|
||||
// Step 7: w_c + w_{c+1} + ··· + w_{i−1} < X_w <= w_c + w_{c+1} + ··· +
|
||||
// w_{i−1} + w_i
|
||||
for (; it != weights.end(); ++it) {
|
||||
w += *it;
|
||||
if (X_w <= w) break;
|
||||
}
|
||||
|
||||
// Step 7: No such item, terminate
|
||||
if (it == weights.end()) break;
|
||||
|
||||
// Step 9: Let t_w = T_w^{w_i}, r_2 = random(t_w, 1) and v_i’s key: k_i
|
||||
// = (r_2)^{1/w_i} (Mod: Let t_w = log(T_w) * {w_i}, e_2 =
|
||||
// log(random(e^{t_w}, 1)) and v_i’s key: k_i = -e_2 / w_i)
|
||||
const double t_w = -T_w.first * *it;
|
||||
std::uniform_real_distribution<double> randomAngle(std::exp(t_w), 1.0);
|
||||
const double e_2 = std::log(randomAngle(*engine_));
|
||||
const double k_i = -e_2 / *it;
|
||||
|
||||
// Step 8: The item in reservoir with the minimum key is replaced by
|
||||
// item v_i
|
||||
reservoir.pop();
|
||||
reservoir.push(std::make_pair(k_i, it - weights.begin() + 1));
|
||||
}
|
||||
}
|
||||
|
||||
for (auto iret = result.end(); iret != result.begin();) {
|
||||
--iret;
|
||||
|
||||
if (reservoir.empty()) {
|
||||
throw std::runtime_error(
|
||||
"Reservoir empty before all elements have been filled");
|
||||
}
|
||||
|
||||
// Step 7: No such item, terminate
|
||||
if (iprob == weights.end()) break;
|
||||
|
||||
// Step 9: Let t_w = T_w^{w_i}, r_2 = random(t_w, 1) and v_i’s key: k_i =
|
||||
// (r_2)^{1/w_i} (Mod: Let t_w = log(T_w) * {w_i}, e_2 =
|
||||
// log(random(e^{t_w}, 1)) and v_i’s key: k_i = -e_2 / w_i)
|
||||
double t_w = -T_w.first * *iprob;
|
||||
std::uniform_real_distribution<double> randomAngle(exp(t_w), 1.0);
|
||||
double e_2 = log(randomAngle(rng));
|
||||
double k_i = -e_2 / *iprob;
|
||||
|
||||
// Step 8: The item in reservoir with the minimum key is replaced by item
|
||||
// v_i
|
||||
*iret = reservoir.top().second;
|
||||
reservoir.pop();
|
||||
reservoir.push(std::make_pair(k_i, iprob - weights.begin() + 1));
|
||||
}
|
||||
}
|
||||
|
||||
for (auto iret = result.end(); iret != result.begin();) {
|
||||
--iret;
|
||||
|
||||
if (reservoir.empty()) {
|
||||
if (!reservoir.empty()) {
|
||||
throw std::runtime_error(
|
||||
"Reservoir empty before all elements have been filled");
|
||||
"Reservoir not empty after all elements have been filled");
|
||||
}
|
||||
|
||||
*iret = reservoir.top().second;
|
||||
reservoir.pop();
|
||||
return result;
|
||||
}
|
||||
|
||||
if (!reservoir.empty()) {
|
||||
throw std::runtime_error(
|
||||
"Reservoir not empty after all elements have been filled");
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
}; // namespace gtsam
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -27,8 +27,9 @@ using namespace gtsam;
|
|||
|
||||
TEST(WeightedSampler, sampleWithoutReplacement) {
|
||||
vector<double> weights{1, 2, 3, 4, 3, 2, 1};
|
||||
mt19937 rng(42);
|
||||
auto samples = sampleWithoutReplacement(rng, 5, weights);
|
||||
std::mt19937 rng(42);
|
||||
WeightedSampler<std::mt19937> sampler(&rng);
|
||||
auto samples = sampler.sampleWithoutReplacement(5, weights);
|
||||
EXPECT_LONGS_EQUAL(5, samples.size());
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue