added gnc loop
parent
90dd2c7035
commit
f897fa81a9
|
@ -29,21 +29,70 @@ using namespace gtsam;
|
||||||
|
|
||||||
using symbol_shorthand::X;
|
using symbol_shorthand::X;
|
||||||
using symbol_shorthand::L;
|
using symbol_shorthand::L;
|
||||||
|
static double tol = 1e-7;
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
template <class BaseOptimizerParameters>
|
template <class BaseOptimizerParameters>
|
||||||
class GncParams {
|
class GncParams {
|
||||||
public:
|
public:
|
||||||
|
|
||||||
// using BaseOptimizer = BaseOptimizerParameters::OptimizerType;
|
/** See NonlinearOptimizerParams::verbosity */
|
||||||
GncParams(const BaseOptimizerParameters& baseOptimizerParams): baseOptimizerParams(baseOptimizerParams) {}
|
enum RobustLossType {
|
||||||
|
GM /*Geman McClure*/, TLS /*Truncated least squares*/
|
||||||
|
};
|
||||||
|
|
||||||
|
// using BaseOptimizer = GaussNewtonOptimizer; // BaseOptimizerParameters::OptimizerType;
|
||||||
|
|
||||||
|
GncParams(const BaseOptimizerParameters& baseOptimizerParams):
|
||||||
|
baseOptimizerParams(baseOptimizerParams),
|
||||||
|
lossType(GM), /* default loss*/
|
||||||
|
maxIterations(100), /* maximum number of iterations*/
|
||||||
|
barcSq(1.0), /* a factor is considered an inlier if factor.error() < barcSq. Note that factor.error() whitens by the covariance*/
|
||||||
|
muStep(1.4){}/* multiplicative factor to reduce/increase the mu in gnc */
|
||||||
|
|
||||||
// default constructor
|
// default constructor
|
||||||
GncParams(): baseOptimizerParams() {}
|
GncParams(): baseOptimizerParams() {}
|
||||||
|
|
||||||
BaseOptimizerParameters baseOptimizerParams;
|
BaseOptimizerParameters baseOptimizerParams;
|
||||||
|
|
||||||
/// any other specific GNC parameters:
|
/// any other specific GNC parameters:
|
||||||
|
RobustLossType lossType;
|
||||||
|
size_t maxIterations;
|
||||||
|
double barcSq;
|
||||||
|
double muStep;
|
||||||
|
|
||||||
|
void setLossType(RobustLossType type){ lossType = type; }
|
||||||
|
void setMaxIterations(size_t maxIter){
|
||||||
|
std::cout
|
||||||
|
<< "setMaxIterations: changing the max number of iterations might lead to less accurate solutions and is not recommended! "
|
||||||
|
<< std::endl;
|
||||||
|
maxIterations = maxIter;
|
||||||
|
}
|
||||||
|
void setInlierThreshold(double inth){ barcSq = inth; }
|
||||||
|
void setMuStep(double step){ muStep = step; }
|
||||||
|
|
||||||
|
/// equals
|
||||||
|
bool equals(const GncParams& other, double tol = 1e-9) const {
|
||||||
|
return baseOptimizerParams.equals(other.baseOptimizerParams)
|
||||||
|
&& lossType == other.lossType
|
||||||
|
&& maxIterations == other.maxIterations
|
||||||
|
&& std::fabs(barcSq - other.barcSq) <= tol
|
||||||
|
&& std::fabs(muStep - other.muStep) <= tol;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// print function
|
||||||
|
void print(const std::string& str) const {
|
||||||
|
std::cout << str << "\n";
|
||||||
|
switch(lossType) {
|
||||||
|
case GM: std::cout << "lossType: Geman McClure" << "\n"; break;
|
||||||
|
default:
|
||||||
|
throw std::runtime_error(
|
||||||
|
"GncParams::print: unknown loss type.");
|
||||||
|
}
|
||||||
|
std::cout << "maxIterations: " << maxIterations << "\n";
|
||||||
|
std::cout << "barcSq: " << barcSq << "\n";
|
||||||
|
std::cout << "muStep: " << muStep << "\n";
|
||||||
|
baseOptimizerParams.print(str);
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
@ -64,33 +113,88 @@ public:
|
||||||
// TODO: Check that all noise models are Gaussian
|
// TODO: Check that all noise models are Gaussian
|
||||||
}
|
}
|
||||||
|
|
||||||
// Values optimize() const {
|
NonlinearFactorGraph getFactors() const { return NonlinearFactorGraph(nfg_); }
|
||||||
// NonlinearFactorGraph currentGraph = graph_;
|
Values getState() const { return Values(state_); }
|
||||||
// for (i : {1, 2, 3}) {
|
GncParameters getParams() const { return GncParameters(params_); }
|
||||||
// BaseOptimizer::Optimizer baseOptimizer(currentGraph, initial);
|
|
||||||
// VALUES currentSolution = baseOptimizer.optimize();
|
|
||||||
// if (converged) {
|
|
||||||
// return currentSolution;
|
|
||||||
// }
|
|
||||||
// graph_i = this->makeGraph(currentSolution);
|
|
||||||
// }
|
|
||||||
//}
|
|
||||||
|
|
||||||
//NonlinearFactorGraph makeGraph(const Values& currentSolution) const {
|
/// implement GNC main loop, including graduating nonconvexity with mu
|
||||||
// // calculate some weights
|
Values optimize() {
|
||||||
// this->calculateWeights();
|
// start by assuming all measurements are inliers
|
||||||
// // copy the graph with new weights
|
Vector weights = Vector::Ones(nfg_.size());
|
||||||
//
|
GaussNewtonOptimizer baseOptimizer(nfg_,state_);
|
||||||
//}
|
Values result = baseOptimizer.optimize();
|
||||||
|
double mu = initializeMu();
|
||||||
|
for(size_t iter=0; iter < params_.maxIterations; iter++){
|
||||||
|
// weights update
|
||||||
|
weights = calculateWeights(result, mu);
|
||||||
|
|
||||||
|
// variable/values update
|
||||||
|
NonlinearFactorGraph graph_iter = this->makeGraph(weights);
|
||||||
|
GaussNewtonOptimizer baseOptimizer_iter(graph_iter, state_);
|
||||||
|
Values result = baseOptimizer.optimize();
|
||||||
|
|
||||||
|
// stopping condition
|
||||||
|
if( checkMuConvergence(mu) ) { break; }
|
||||||
|
|
||||||
|
// otherwise update mu
|
||||||
|
mu = updateMu(mu);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// initialize the gnc parameter mu such that loss is approximately convex
|
||||||
|
double initializeMu() const {
|
||||||
|
// compute largest error across all factors
|
||||||
|
double rmax_sq = 0.0;
|
||||||
|
for (size_t i = 0; i < nfg_.size(); i++) {
|
||||||
|
if(nfg_[i]){
|
||||||
|
rmax_sq = std::max(rmax_sq, nfg_[i]->error(state_));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// set initial mu
|
||||||
|
switch(params_.lossType) {
|
||||||
|
case GncParameters::GM:
|
||||||
|
return 2*rmax_sq / params_.barcSq; // initial mu
|
||||||
|
default:
|
||||||
|
throw std::runtime_error(
|
||||||
|
"GncOptimizer::initializeMu: called with unknown loss type.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// update the gnc parameter mu to gradually increase nonconvexity
|
||||||
|
double updateMu(const double mu) const {
|
||||||
|
switch(params_.lossType) {
|
||||||
|
case GncParameters::GM:
|
||||||
|
return std::max(1.0 , mu / params_.muStep); // reduce mu, but saturate at 1
|
||||||
|
default:
|
||||||
|
throw std::runtime_error(
|
||||||
|
"GncOptimizer::updateMu: called with unknown loss type.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// check if we have reached the value of mu for which the surrogate loss matches the original loss
|
||||||
|
bool checkMuConvergence(const double mu) const {
|
||||||
|
switch(params_.lossType) {
|
||||||
|
case GncParameters::GM:
|
||||||
|
return std::fabs(mu - 1.0) < 1e-9; // mu=1 recovers the original GM function
|
||||||
|
default:
|
||||||
|
throw std::runtime_error(
|
||||||
|
"GncOptimizer::checkMuConvergence: called with unknown loss type.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// create a graph where each factor is weighted by the gnc weights
|
||||||
|
NonlinearFactorGraph makeGraph(const Vector& weights) const {
|
||||||
|
return NonlinearFactorGraph(nfg_);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// calculate gnc weights
|
||||||
|
Vector calculateWeights(const Values currentEstimate, const double mu){
|
||||||
|
Vector weights = Vector::Ones(nfg_.size());
|
||||||
|
return weights;
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
///* ************************************************************************* */
|
|
||||||
//TEST(GncOptimizer, calculateWeights) {
|
|
||||||
//}
|
|
||||||
//
|
|
||||||
///* ************************************************************************* */
|
|
||||||
//TEST(GncOptimizer, copyGraph) {
|
|
||||||
//}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(GncOptimizer, gncParamsConstructor) {
|
TEST(GncOptimizer, gncParamsConstructor) {
|
||||||
|
@ -106,7 +210,7 @@ TEST(GncOptimizer, gncParamsConstructor) {
|
||||||
|
|
||||||
// and check params become different if we change lmParams
|
// and check params become different if we change lmParams
|
||||||
lmParams.setVerbosity("DELTA");
|
lmParams.setVerbosity("DELTA");
|
||||||
CHECK(!lmParams.equals(gncParams1.baseOptimizerParams));
|
CHECK(! lmParams.equals(gncParams1.baseOptimizerParams));
|
||||||
|
|
||||||
// and same for GN
|
// and same for GN
|
||||||
GaussNewtonParams gnParams;
|
GaussNewtonParams gnParams;
|
||||||
|
@ -116,9 +220,44 @@ TEST(GncOptimizer, gncParamsConstructor) {
|
||||||
// check default constructor
|
// check default constructor
|
||||||
GncParams<GaussNewtonParams> gncParams2b;
|
GncParams<GaussNewtonParams> gncParams2b;
|
||||||
CHECK(gnParams.equals(gncParams2b.baseOptimizerParams));
|
CHECK(gnParams.equals(gncParams2b.baseOptimizerParams));
|
||||||
|
|
||||||
|
// change something at the gncParams level
|
||||||
|
GncParams<GaussNewtonParams> gncParams2c(gncParams2b);
|
||||||
|
gncParams2c.setLossType(GncParams<GaussNewtonParams>::RobustLossType::TLS);
|
||||||
|
CHECK(! gncParams2c.equals(gncParams2b.baseOptimizerParams));
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
TEST(GncOptimizer, gncConstructor) {
|
||||||
|
// has to have Gaussian noise models !
|
||||||
|
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor on a 2D point
|
||||||
|
|
||||||
|
Point2 p0(3, 3);
|
||||||
|
Values initial;
|
||||||
|
initial.insert(X(1), p0);
|
||||||
|
|
||||||
|
LevenbergMarquardtParams lmParams;
|
||||||
|
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||||
|
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
||||||
|
|
||||||
|
CHECK(gnc.getFactors().equals(fg));
|
||||||
|
CHECK(gnc.getState().equals(initial));
|
||||||
|
CHECK(gnc.getParams().equals(gncParams));
|
||||||
|
}
|
||||||
|
|
||||||
|
///* ************************************************************************* */
|
||||||
|
//TEST(GncOptimizer, calculateWeights) {
|
||||||
|
//}
|
||||||
|
//
|
||||||
|
///* ************************************************************************* */
|
||||||
|
//TEST(GncOptimizer, calculateWeights) {
|
||||||
|
//}
|
||||||
|
//
|
||||||
|
///* ************************************************************************* */
|
||||||
|
//TEST(GncOptimizer, copyGraph) {
|
||||||
|
//}
|
||||||
|
|
||||||
|
/* ************************************************************************* *
|
||||||
TEST(GncOptimizer, makeGraph) {
|
TEST(GncOptimizer, makeGraph) {
|
||||||
// has to have Gaussian noise models !
|
// has to have Gaussian noise models !
|
||||||
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor on a 2D point
|
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor on a 2D point
|
||||||
|
@ -134,7 +273,7 @@ TEST(GncOptimizer, makeGraph) {
|
||||||
// NonlinearFactorGraph actual = gnc.makeGraph(initial);
|
// NonlinearFactorGraph actual = gnc.makeGraph(initial);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* *
|
/* ************************************************************************* */
|
||||||
TEST(GncOptimizer, optimize) {
|
TEST(GncOptimizer, optimize) {
|
||||||
// has to have Gaussian noise models !
|
// has to have Gaussian noise models !
|
||||||
auto fg = example::createReallyNonlinearFactorGraph();
|
auto fg = example::createReallyNonlinearFactorGraph();
|
||||||
|
@ -144,10 +283,13 @@ TEST(GncOptimizer, optimize) {
|
||||||
initial.insert(X(1), p0);
|
initial.insert(X(1), p0);
|
||||||
|
|
||||||
LevenbergMarquardtParams lmParams;
|
LevenbergMarquardtParams lmParams;
|
||||||
GncParams gncParams(lmParams);
|
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||||
auto gnc = GncOptimizer(fg, initial, gncParams);
|
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
||||||
|
|
||||||
|
gncParams.print("");
|
||||||
|
|
||||||
Values actual = gnc.optimize();
|
Values actual = gnc.optimize();
|
||||||
DOUBLES_EQUAL(0, fg.error(actual2), tol);
|
DOUBLES_EQUAL(0, fg.error(actual), tol);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
Loading…
Reference in New Issue