added gnc loop

release/4.3a0
lcarlone 2020-11-27 15:14:41 -05:00
parent 90dd2c7035
commit f897fa81a9
1 changed files with 174 additions and 32 deletions

View File

@ -29,21 +29,70 @@ using namespace gtsam;
using symbol_shorthand::X;
using symbol_shorthand::L;
static double tol = 1e-7;
/* ************************************************************************* */
template <class BaseOptimizerParameters>
class GncParams {
public:
// using BaseOptimizer = BaseOptimizerParameters::OptimizerType;
GncParams(const BaseOptimizerParameters& baseOptimizerParams): baseOptimizerParams(baseOptimizerParams) {}
/** See NonlinearOptimizerParams::verbosity */
enum RobustLossType {
GM /*Geman McClure*/, TLS /*Truncated least squares*/
};
// using BaseOptimizer = GaussNewtonOptimizer; // BaseOptimizerParameters::OptimizerType;
GncParams(const BaseOptimizerParameters& baseOptimizerParams):
baseOptimizerParams(baseOptimizerParams),
lossType(GM), /* default loss*/
maxIterations(100), /* maximum number of iterations*/
barcSq(1.0), /* a factor is considered an inlier if factor.error() < barcSq. Note that factor.error() whitens by the covariance*/
muStep(1.4){}/* multiplicative factor to reduce/increase the mu in gnc */
// default constructor
GncParams(): baseOptimizerParams() {}
BaseOptimizerParameters baseOptimizerParams;
/// any other specific GNC parameters:
RobustLossType lossType;
size_t maxIterations;
double barcSq;
double muStep;
void setLossType(RobustLossType type){ lossType = type; }
void setMaxIterations(size_t maxIter){
std::cout
<< "setMaxIterations: changing the max number of iterations might lead to less accurate solutions and is not recommended! "
<< std::endl;
maxIterations = maxIter;
}
void setInlierThreshold(double inth){ barcSq = inth; }
void setMuStep(double step){ muStep = step; }
/// equals
bool equals(const GncParams& other, double tol = 1e-9) const {
return baseOptimizerParams.equals(other.baseOptimizerParams)
&& lossType == other.lossType
&& maxIterations == other.maxIterations
&& std::fabs(barcSq - other.barcSq) <= tol
&& std::fabs(muStep - other.muStep) <= tol;
}
/// print function
void print(const std::string& str) const {
std::cout << str << "\n";
switch(lossType) {
case GM: std::cout << "lossType: Geman McClure" << "\n"; break;
default:
throw std::runtime_error(
"GncParams::print: unknown loss type.");
}
std::cout << "maxIterations: " << maxIterations << "\n";
std::cout << "barcSq: " << barcSq << "\n";
std::cout << "muStep: " << muStep << "\n";
baseOptimizerParams.print(str);
}
};
/* ************************************************************************* */
@ -64,33 +113,88 @@ public:
// TODO: Check that all noise models are Gaussian
}
// Values optimize() const {
// NonlinearFactorGraph currentGraph = graph_;
// for (i : {1, 2, 3}) {
// BaseOptimizer::Optimizer baseOptimizer(currentGraph, initial);
// VALUES currentSolution = baseOptimizer.optimize();
// if (converged) {
// return currentSolution;
// }
// graph_i = this->makeGraph(currentSolution);
// }
//}
NonlinearFactorGraph getFactors() const { return NonlinearFactorGraph(nfg_); }
Values getState() const { return Values(state_); }
GncParameters getParams() const { return GncParameters(params_); }
//NonlinearFactorGraph makeGraph(const Values& currentSolution) const {
// // calculate some weights
// this->calculateWeights();
// // copy the graph with new weights
//
//}
/// implement GNC main loop, including graduating nonconvexity with mu
Values optimize() {
// start by assuming all measurements are inliers
Vector weights = Vector::Ones(nfg_.size());
GaussNewtonOptimizer baseOptimizer(nfg_,state_);
Values result = baseOptimizer.optimize();
double mu = initializeMu();
for(size_t iter=0; iter < params_.maxIterations; iter++){
// weights update
weights = calculateWeights(result, mu);
// variable/values update
NonlinearFactorGraph graph_iter = this->makeGraph(weights);
GaussNewtonOptimizer baseOptimizer_iter(graph_iter, state_);
Values result = baseOptimizer.optimize();
// stopping condition
if( checkMuConvergence(mu) ) { break; }
// otherwise update mu
mu = updateMu(mu);
}
return result;
}
/// initialize the gnc parameter mu such that loss is approximately convex
double initializeMu() const {
// compute largest error across all factors
double rmax_sq = 0.0;
for (size_t i = 0; i < nfg_.size(); i++) {
if(nfg_[i]){
rmax_sq = std::max(rmax_sq, nfg_[i]->error(state_));
}
}
// set initial mu
switch(params_.lossType) {
case GncParameters::GM:
return 2*rmax_sq / params_.barcSq; // initial mu
default:
throw std::runtime_error(
"GncOptimizer::initializeMu: called with unknown loss type.");
}
}
/// update the gnc parameter mu to gradually increase nonconvexity
double updateMu(const double mu) const {
switch(params_.lossType) {
case GncParameters::GM:
return std::max(1.0 , mu / params_.muStep); // reduce mu, but saturate at 1
default:
throw std::runtime_error(
"GncOptimizer::updateMu: called with unknown loss type.");
}
}
/// check if we have reached the value of mu for which the surrogate loss matches the original loss
bool checkMuConvergence(const double mu) const {
switch(params_.lossType) {
case GncParameters::GM:
return std::fabs(mu - 1.0) < 1e-9; // mu=1 recovers the original GM function
default:
throw std::runtime_error(
"GncOptimizer::checkMuConvergence: called with unknown loss type.");
}
}
/// create a graph where each factor is weighted by the gnc weights
NonlinearFactorGraph makeGraph(const Vector& weights) const {
return NonlinearFactorGraph(nfg_);
}
/// calculate gnc weights
Vector calculateWeights(const Values currentEstimate, const double mu){
Vector weights = Vector::Ones(nfg_.size());
return weights;
}
};
///* ************************************************************************* */
//TEST(GncOptimizer, calculateWeights) {
//}
//
///* ************************************************************************* */
//TEST(GncOptimizer, copyGraph) {
//}
/* ************************************************************************* */
TEST(GncOptimizer, gncParamsConstructor) {
@ -106,7 +210,7 @@ TEST(GncOptimizer, gncParamsConstructor) {
// and check params become different if we change lmParams
lmParams.setVerbosity("DELTA");
CHECK(!lmParams.equals(gncParams1.baseOptimizerParams));
CHECK(! lmParams.equals(gncParams1.baseOptimizerParams));
// and same for GN
GaussNewtonParams gnParams;
@ -116,9 +220,44 @@ TEST(GncOptimizer, gncParamsConstructor) {
// check default constructor
GncParams<GaussNewtonParams> gncParams2b;
CHECK(gnParams.equals(gncParams2b.baseOptimizerParams));
// change something at the gncParams level
GncParams<GaussNewtonParams> gncParams2c(gncParams2b);
gncParams2c.setLossType(GncParams<GaussNewtonParams>::RobustLossType::TLS);
CHECK(! gncParams2c.equals(gncParams2b.baseOptimizerParams));
}
/* ************************************************************************* */
TEST(GncOptimizer, gncConstructor) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor on a 2D point
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
CHECK(gnc.getFactors().equals(fg));
CHECK(gnc.getState().equals(initial));
CHECK(gnc.getParams().equals(gncParams));
}
///* ************************************************************************* */
//TEST(GncOptimizer, calculateWeights) {
//}
//
///* ************************************************************************* */
//TEST(GncOptimizer, calculateWeights) {
//}
//
///* ************************************************************************* */
//TEST(GncOptimizer, copyGraph) {
//}
/* ************************************************************************* *
TEST(GncOptimizer, makeGraph) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor on a 2D point
@ -134,7 +273,7 @@ TEST(GncOptimizer, makeGraph) {
// NonlinearFactorGraph actual = gnc.makeGraph(initial);
}
/* ************************************************************************* *
/* ************************************************************************* */
TEST(GncOptimizer, optimize) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
@ -144,10 +283,13 @@ TEST(GncOptimizer, optimize) {
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams gncParams(lmParams);
auto gnc = GncOptimizer(fg, initial, gncParams);
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
gncParams.print("");
Values actual = gnc.optimize();
DOUBLES_EQUAL(0, fg.error(actual2), tol);
DOUBLES_EQUAL(0, fg.error(actual), tol);
}
/* ************************************************************************* */