refactor QPSolver into its own class

release/4.3a0
thduynguyen 2014-04-15 16:27:19 -04:00
parent c0e201f06c
commit f88c928ca0
3 changed files with 485 additions and 411 deletions

321
gtsam/linear/QPSolver.cpp Normal file
View File

@ -0,0 +1,321 @@
/*
* QPSolver.cpp
* @brief:
* @date: Apr 15, 2014
* @author: thduynguyen
*/
#include <boost/foreach.hpp>
#include <gtsam/linear/QPSolver.h>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
QPSolver::QPSolver(const GaussianFactorGraph& graph) :
graph_(graph), fullFactorIndices_(graph) {
// Split the original graph into unconstrained and constrained part
// and collect indices of constrained factors
for (size_t i = 0; i < graph.nrFactors(); ++i) {
// obtain the factor and its noise model
JacobianFactor::shared_ptr jacobian = toJacobian(graph.at(i));
if (jacobian && jacobian->get_model()
&& jacobian->get_model()->isConstrained()) {
constraintIndices_.push_back(i);
}
}
// Collect constrained variable keys
KeySet constrainedVars;
BOOST_FOREACH(size_t index, constraintIndices_) {
KeyVector keys = graph[index]->keys();
constrainedVars.insert(keys.begin(), keys.end());
}
// Collect unconstrained hessians of constrained vars to build dual graph
freeHessians_ = unconstrainedHessiansOfConstrainedVars(graph, constrainedVars);
freeHessianFactorIndex_ = VariableIndex(*freeHessians_);
}
/* ************************************************************************* */
GaussianFactorGraph::shared_ptr QPSolver::unconstrainedHessiansOfConstrainedVars(
const GaussianFactorGraph& graph, const KeySet& constrainedVars) const {
VariableIndex variableIndex(graph);
GaussianFactorGraph::shared_ptr hfg = boost::make_shared<GaussianFactorGraph>();
// Collect all factors involving constrained vars
FastSet<size_t> factors;
BOOST_FOREACH(Key key, constrainedVars) {
VariableIndex::Factors factorsOfThisVar = variableIndex[key];
BOOST_FOREACH(size_t factorIndex, factorsOfThisVar) {
factors.insert(factorIndex);
}
}
// Convert each factor into Hessian
BOOST_FOREACH(size_t factorIndex, factors) {
if (!graph[factorIndex]) continue;
// See if this is a Jacobian factor
JacobianFactor::shared_ptr jf = toJacobian(graph[factorIndex]);
if (jf) {
// Dealing with mixed constrained factor
if (jf->get_model() && jf->isConstrained()) {
// Turn a mixed-constrained factor into a factor with 0 information on the constrained part
Vector sigmas = jf->get_model()->sigmas();
Vector newPrecisions(sigmas.size());
bool mixed = false;
for (size_t s=0; s<sigmas.size(); ++s) {
if (sigmas[s] <= 1e-9) newPrecisions[s] = 0.0; // 0 info for constraints (both ineq and eq)
else {
newPrecisions[s] = 1.0/sigmas[s];
mixed = true;
}
}
if (mixed) { // only add free hessians if it's mixed
JacobianFactor::shared_ptr newJacobian = toJacobian(jf->clone());
newJacobian->setModel(noiseModel::Diagonal::Precisions(newPrecisions));
hfg->push_back(HessianFactor(*newJacobian));
}
}
else { // unconstrained Jacobian
// Convert the original linear factor to Hessian factor
hfg->push_back(HessianFactor(*graph[factorIndex]));
}
}
else { // If it's not a Jacobian, it should be a hessian factor. Just add!
hfg->push_back(graph[factorIndex]);
}
}
return hfg;
}
/* ************************************************************************* */
GaussianFactorGraph QPSolver::buildDualGraph(const GaussianFactorGraph& graph,
const VectorValues& x0) const {
// The dual graph to return
GaussianFactorGraph dualGraph;
// For each variable xi involving in some constraint, compute the unconstrained gradient
// wrt xi from the prebuilt freeHessian graph
// \grad f(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
BOOST_FOREACH(const VariableIndex::value_type& xiKey_factors, freeHessianFactorIndex_) {
Key xiKey = xiKey_factors.first;
VariableIndex::Factors xiFactors = xiKey_factors.second;
// Find xi's dim from the first factor on xi
if (xiFactors.size() == 0) continue;
GaussianFactor::shared_ptr xiFactor0 = freeHessians_->at(0);
size_t xiDim = xiFactor0->getDim(xiFactor0->find(xiKey));
// Compute gradf(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
Vector gradf_xi = zero(xiDim);
BOOST_FOREACH(size_t factorIx, xiFactors) {
HessianFactor::shared_ptr factor = toHessian(freeHessians_->at(factorIx));
Factor::const_iterator xi = factor->find(xiKey);
// Sum over Gij*xj for all xj connecting to xi
for (Factor::const_iterator xj = factor->begin(); xj != factor->end();
++xj) {
// Obtain Gij from the Hessian factor
// Hessian factor only stores an upper triangular matrix, so be careful when i>j
Matrix Gij;
if (xi > xj) {
Matrix Gji = factor->info(xj, xi);
Gij = Gji.transpose();
}
else {
Gij = factor->info(xi, xj);
}
// Accumulate Gij*xj to gradf
Vector x0_j = x0.at(*xj);
gradf_xi += Gij * x0_j;
}
// Subtract the linear term gi
gradf_xi += -factor->linearTerm(xi);
}
// Obtain the jacobians for lambda variables from their corresponding constraints
// gradc_k(xi) = \frac{\partial c_k}{\partial xi}'
std::vector<std::pair<Key, Matrix> > lambdaTerms; // collection of lambda_k, and gradc_k
BOOST_FOREACH(size_t factorIndex, fullFactorIndices_[xiKey]) {
JacobianFactor::shared_ptr factor = toJacobian(graph.at(factorIndex));
if (!factor || !factor->isConstrained()) continue;
// Gradient is the transpose of the Jacobian: A_k = gradc_k(xi) = \frac{\partial c_k}{\partial xi}'
// Each column for each lambda_k corresponds to [the transpose of] each constrained row factor
Matrix A_k = factor->getA(factor->find(xiKey)).transpose();
// Deal with mixed sigmas: no information if sigma != 0
Vector sigmas = factor->get_model()->sigmas();
for (size_t sigmaIx = 0; sigmaIx<sigmas.size(); ++sigmaIx) {
// if it's either ineq (sigma<0) or unconstrained (sigma>0)
// we have no information about it
if (fabs(sigmas[sigmaIx]) > 1e-9) {
A_k.col(sigmaIx) = zero(A_k.rows());
}
}
// Use factorIndex as the lambda's key.
lambdaTerms.push_back(make_pair(factorIndex, A_k));
}
// Enforce constrained noise model so lambdas are solved with QR
// and should exactly satisfy all the equations
dualGraph.push_back(JacobianFactor(lambdaTerms, gradf_xi,
noiseModel::Constrained::All(gradf_xi.size())));
// Add 0 priors on all lambdas to make sure the graph is solvable
// TODO: Can we do for all lambdas like this, or only for those with no information?
BOOST_FOREACH(size_t factorIndex, fullFactorIndices_[xiKey]) {
JacobianFactor::shared_ptr factor = toJacobian(graph.at(factorIndex));
if (!factor || !factor->isConstrained()) continue;
size_t dim= factor->get_model()->dim();
// Use factorIndex as the lambda's key.
dualGraph.push_back(JacobianFactor(factorIndex, eye(dim), zero(dim)));
}
}
return dualGraph;
}
/* ************************************************************************* */
std::pair<int, int> QPSolver::findWorstViolatedActiveIneq(const VectorValues& lambdas) const {
int worstFactorIx = -1, worstSigmaIx = -1;
// preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either
// inactive or a good ineq constraint, so we don't care!
double maxLambda = 0.0;
BOOST_FOREACH(size_t factorIx, constraintIndices_) {
Vector lambda = lambdas.at(factorIx);
Vector orgSigmas = toJacobian(graph_.at(factorIx))->get_model()->sigmas();
for (size_t j = 0; j<orgSigmas.size(); ++j)
// If it is a BAD active inequality, and lambda is larger than the current max
if (orgSigmas[j]<0 && lambda[j] > maxLambda) {
worstFactorIx = factorIx;
worstSigmaIx = j;
maxLambda = lambda[j];
}
}
return make_pair(worstFactorIx, worstSigmaIx);
}
/* ************************************************************************* */
bool QPSolver::updateWorkingSetInplace(GaussianFactorGraph& workingGraph,
int factorIx, int sigmaIx, double newSigma) const {
if (factorIx < 0 || sigmaIx < 0)
return false;
Vector sigmas = toJacobian(workingGraph.at(factorIx))->get_model()->sigmas();
sigmas[sigmaIx] = newSigma; // removing it from the working set
toJacobian(workingGraph.at(factorIx))->setModel(true, sigmas);
return true;
}
/* ************************************************************************* */
boost::tuple<double, int, int> QPSolver::computeStepSize(const GaussianFactorGraph& workingGraph,
const VectorValues& xk, const VectorValues& p) const {
static bool debug = true;
double minAlpha = 1.0;
int closestFactorIx = -1, closestSigmaIx = -1;
BOOST_FOREACH(size_t factorIx, constraintIndices_) {
JacobianFactor::shared_ptr jacobian = toJacobian(workingGraph.at(factorIx));
Vector sigmas = jacobian->get_model()->sigmas();
Vector b = jacobian->getb();
for (size_t s = 0; s<sigmas.size(); ++s) {
// If it is an inactive inequality, compute alpha and update min
if (sigmas[s]<0) {
// Compute aj'*p
double ajTp = 0.0;
for (Factor::const_iterator xj = jacobian->begin(); xj != jacobian->end(); ++xj) {
Vector pj = p.at(*xj);
Vector aj = jacobian->getA(xj).row(s);
ajTp += aj.dot(pj);
}
if (debug) {
cout << "s, ajTp: " << s << " " << ajTp << endl;
}
// Check if aj'*p >0. Don't care if it's not.
if (ajTp<=0) continue;
// Compute aj'*xk
double ajTx = 0.0;
for (Factor::const_iterator xj = jacobian->begin(); xj != jacobian->end(); ++xj) {
Vector xkj = xk.at(*xj);
Vector aj = jacobian->getA(xj).row(s);
ajTx += aj.dot(xkj);
}
if (debug) {
cout << "b[s], ajTx: " << b[s] << " " << ajTx << " " << ajTp << endl;
}
// alpha = (bj - aj'*xk) / (aj'*p)
double alpha = (b[s] - ajTx)/ajTp;
if (debug) {
cout << "alpha: " << alpha << endl;
}
// We want the minimum of all those max alphas
if (alpha < minAlpha) {
closestFactorIx = factorIx;
closestSigmaIx = s;
minAlpha = alpha;
}
}
}
}
return boost::make_tuple(minAlpha, closestFactorIx, closestSigmaIx);
}
/* ************************************************************************* */
bool QPSolver::iterateInPlace(GaussianFactorGraph& workingGraph, VectorValues& currentSolution) const {
static bool debug = true;
// Obtain the solution from the current working graph
VectorValues newSolution = workingGraph.optimize();
if (debug) newSolution.print("New solution:");
// If we CAN'T move further
if (newSolution.equals(currentSolution, 1e-5)) {
// Compute lambda from the dual graph
GaussianFactorGraph dualGraph = buildDualGraph(workingGraph, newSolution);
if (debug) dualGraph.print("Dual graph: ");
VectorValues lambdas = dualGraph.optimize();
if (debug) lambdas.print("lambdas :");
int factorIx, sigmaIx;
boost::tie(factorIx, sigmaIx) = findWorstViolatedActiveIneq(lambdas);
// Try to disactivate the weakest violated ineq constraints
// if not successful, i.e. all ineq constraints are satisfied: We have the solution!!
if (!updateWorkingSetInplace(workingGraph, factorIx, sigmaIx, -1.0))
return true;
}
else {
// If we CAN make some progress
// Adapt stepsize if some inactive inequality constraints complain about this move
double alpha;
int factorIx, sigmaIx;
VectorValues p = newSolution - currentSolution;
boost::tie(alpha, factorIx, sigmaIx) = computeStepSize(workingGraph, currentSolution, p);
if (debug) {
cout << "alpha, factorIx, sigmaIx: " << alpha << " " << factorIx << " " << sigmaIx << endl;
}
// also add to the working set the one that complains the most
updateWorkingSetInplace(workingGraph, factorIx, sigmaIx, 0.0);
// step!
currentSolution = currentSolution + alpha * p;
}
return false;
}
/* ************************************************************************* */
VectorValues QPSolver::optimize(const VectorValues& initials) const {
GaussianFactorGraph workingGraph = graph_.clone();
VectorValues currentSolution = initials;
bool converged = false;
while (!converged) {
converged = iterateInPlace(workingGraph, currentSolution);
}
return currentSolution;
}
} /* namespace gtsam */

160
gtsam/linear/QPSolver.h Normal file
View File

@ -0,0 +1,160 @@
/*
* QPSolver.h
* @brief: A quadratic programming solver implements the active set method
* @date: Apr 15, 2014
* @author: thduynguyen
*/
#pragma once
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
namespace gtsam {
/**
* This class implements the active set method to solve quadratic programming problems
* encoded in a GaussianFactorGraph with special mixed constrained noise models, in which
* a negative sigma denotes an inequality <=0 constraint,
* a zero sigma denotes an equality =0 constraint,
* and a positive sigma denotes a normal Gaussian noise model.
*/
class QPSolver {
const GaussianFactorGraph& graph_; //!< the original graph, can't be modified!
FastVector<size_t> constraintIndices_; //!< Indices of constrained factors in the original graph
GaussianFactorGraph::shared_ptr freeHessians_; //!< unconstrained Hessians of constrained variables
VariableIndex freeHessianFactorIndex_; //!< indices of unconstrained Hessian factors of constrained variables
// gtsam calls it "VariableIndex", but I think FactorIndex
// makes more sense, because it really stores factor indices.
VariableIndex fullFactorIndices_; //!< indices of factors involving each variable.
// gtsam calls it "VariableIndex", but I think FactorIndex
// makes more sense, because it really stores factor indices.
public:
/// Constructor
QPSolver(const GaussianFactorGraph& graph);
/// Return indices of all constrained factors
FastVector<size_t> constraintIndices() const { return constraintIndices_; }
/// Return the Hessian factor graph of constrained variables
GaussianFactorGraph::shared_ptr freeHessiansOfConstrainedVars() const {
return freeHessians_;
}
/**
* Build the dual graph to solve for the Lagrange multipliers.
*
* The Lagrangian function is:
* L(X,lambdas) = f(X) - \sum_k lambda_k * c_k(X),
* where the unconstrained part is
* f(X) = 0.5*X'*G*X - X'*g + 0.5*f0
* and the linear equality constraints are
* c1(X), c2(X), ..., cm(X)
*
* Take the derivative of L wrt X at the solution and set it to 0, we have
* \grad f(X) = \sum_k lambda_k * \grad c_k(X) (*)
*
* For each set of rows of (*) corresponding to a variable xi involving in some constraints
* we have:
* \grad f(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
* \grad c_k(xi) = \frac{\partial c_k}{\partial xi}'
*
* Note: If xi does not involve in any constraint, we have the trivial condition
* \grad f(Xi) = 0, which should be satisfied as a usual condition for unconstrained variables.
*
* So each variable xi involving in some constraints becomes a linear factor A*lambdas - b = 0
* on the constraints' lambda multipliers, as follows:
* - The jacobian term A_k for each lambda_k is \grad c_k(xi)
* - The constant term b is \grad f(xi), which can be computed from all unconstrained
* Hessian factors connecting to xi: \grad f(xi) = \sum_j G_ij*xj - gi
*/
GaussianFactorGraph buildDualGraph(const GaussianFactorGraph& graph,
const VectorValues& x0) const;
/**
* Find the BAD active ineq that pulls x strongest to the wrong direction of its constraint
* (i.e. it is pulling towards >0, while its feasible region is <=0)
*
* For active ineq constraints (those that are enforced as eq constraints now
* in the working set), we want lambda < 0.
* This is because:
* - From the Lagrangian L = f - lambda*c, we know that the constraint force is
* (lambda * \grad c) = \grad f, because it cancels out the unconstrained
* unconstrained force (-\grad f), which is pulling x in the opposite direction
* of \grad f towards the unconstrained minimum point
* - We also know that at the constraint surface \grad c points toward + (>= 0),
* while we are solving for - (<=0) constraint
* - So, we want the constraint force (lambda * \grad c) to to pull x
* towards the opposite direction of \grad c, i.e. towards the area
* where the ineq constraint <=0 is satisfied.
* - Hence, we want lambda < 0
*
* So active ineqs with lambda > 0 are BAD. And we want the worst one with the largest lambda.
*
*/
std::pair<int, int> findWorstViolatedActiveIneq(const VectorValues& lambdas) const;
/**
* Deactivate or activate an ineq constraint in place
* Warning: modify in-place to avoid copy/clone
* @return true if update successful
*/
bool updateWorkingSetInplace(GaussianFactorGraph& workingGraph,
int factorIx, int sigmaIx, double newSigma) const;
/**
* Compute step size alpha for the new solution x' = xk + alpha*p, where alpha \in [0,1]
* We have to make sure the new solution with alpha satisfies all INACTIVE ineq constraints
* If some inactive ineq constraints complain about the full step (alpha = 1),
* we have to adjust alpha to stay within the ineq constraints' feasible regions.
*
* For each inactive ineq j:
* - We already have: aj'*xk - bj <= 0, since xk satisfies all ineq constraints
* - We want: aj'*(xk + alpha*p) - bj <= 0
* - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0
* it's good!
* - We only care when aj'*p > 0. In this case, we need to choose alpha so that
* aj'*xk + alpha*aj'*p - bj <= 0 --> alpha <= (bj - aj'*xk) / (aj'*p)
* We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p)
*
* We want the minimum of all those alphas among all inactive ineq.
*
* @return a tuple of (alpha, factorIndex, sigmaIndex) where (factorIndex, sigmaIndex)
* is the constraint that has minimum alpha, or (-1,-1) if alpha = 1.
* This constraint will be added to the working set and become active
* in the next iteration
*/
boost::tuple<double, int, int> computeStepSize(const GaussianFactorGraph& workingGraph,
const VectorValues& xk, const VectorValues& p) const;
/** Iterate 1 step, modify workingGraph and currentSolution *IN PLACE* !!! */
bool iterateInPlace(GaussianFactorGraph& workingGraph, VectorValues& currentSolution) const;
/** Optimize */
VectorValues optimize(const VectorValues& initials) const;
private:
/// Convert a Gaussian factor to a jacobian. return empty shared ptr if failed
JacobianFactor::shared_ptr toJacobian(const GaussianFactor::shared_ptr& factor) const {
JacobianFactor::shared_ptr jacobian(
boost::dynamic_pointer_cast<JacobianFactor>(factor));
return jacobian;
}
/// Convert a Gaussian factor to a Hessian. Return empty shared ptr if failed
HessianFactor::shared_ptr toHessian(const GaussianFactor::shared_ptr factor) const {
HessianFactor::shared_ptr hessian(boost::dynamic_pointer_cast<HessianFactor>(factor));
return hessian;
}
/// Collect all free Hessians involving constrained variables into a graph
GaussianFactorGraph::shared_ptr unconstrainedHessiansOfConstrainedVars(
const GaussianFactorGraph& graph, const KeySet& constrainedVars) const;
};
} /* namespace gtsam */

View File

@ -17,11 +17,9 @@
*/
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/linear/QPSolver.h>
using namespace std;
using namespace gtsam;
@ -30,411 +28,6 @@ using namespace gtsam::symbol_shorthand;
#define TEST_DISABLED(testGroup, testName)\
void testGroup##testName##Test(TestResult& result_, const std::string& name_)
class QPSolver {
const GaussianFactorGraph& graph_; //!< the original graph, can't be modified!
FastVector<size_t> constraintIndices_; //!< Indices of constrained factors in the original graph
GaussianFactorGraph::shared_ptr freeHessians_; //!< unconstrained Hessians of constrained variables
VariableIndex freeHessianFactorIndex_; //!< indices of unconstrained Hessian factors of constrained variables
// gtsam calls it "VariableIndex", but I think FactorIndex
// makes more sense, because it really stores factor indices.
VariableIndex fullFactorIndices_; //!< indices of factors involving each variable.
// gtsam calls it "VariableIndex", but I think FactorIndex
// makes more sense, because it really stores factor indices.
public:
/// Constructor
QPSolver(const GaussianFactorGraph& graph) :
graph_(graph), fullFactorIndices_(graph) {
// Split the original graph into unconstrained and constrained part
// and collect indices of constrained factors
for (size_t i = 0; i < graph.nrFactors(); ++i) {
// obtain the factor and its noise model
JacobianFactor::shared_ptr jacobian = toJacobian(graph.at(i));
if (jacobian && jacobian->get_model()
&& jacobian->get_model()->isConstrained()) {
constraintIndices_.push_back(i);
}
}
// Collect constrained variable keys
KeySet constrainedVars;
BOOST_FOREACH(size_t index, constraintIndices_) {
KeyVector keys = graph[index]->keys();
constrainedVars.insert(keys.begin(), keys.end());
}
// Collect unconstrained hessians of constrained vars to build dual graph
freeHessians_ = unconstrainedHessiansOfConstrainedVars(graph, constrainedVars);
freeHessianFactorIndex_ = VariableIndex(*freeHessians_);
}
/// Return indices of all constrained factors
FastVector<size_t> constraintIndices() const { return constraintIndices_; }
/// Convert a Gaussian factor to a jacobian. return empty shared ptr if failed
JacobianFactor::shared_ptr toJacobian(const GaussianFactor::shared_ptr& factor) const {
JacobianFactor::shared_ptr jacobian(
boost::dynamic_pointer_cast<JacobianFactor>(factor));
return jacobian;
}
/// Convert a Gaussian factor to a Hessian. Return empty shared ptr if failed
HessianFactor::shared_ptr toHessian(const GaussianFactor::shared_ptr factor) const {
HessianFactor::shared_ptr hessian(boost::dynamic_pointer_cast<HessianFactor>(factor));
return hessian;
}
/// Return the Hessian factor graph of constrained variables
GaussianFactorGraph::shared_ptr freeHessiansOfConstrainedVars() const {
return freeHessians_;
}
/* ************************************************************************* */
GaussianFactorGraph::shared_ptr unconstrainedHessiansOfConstrainedVars(
const GaussianFactorGraph& graph, const KeySet& constrainedVars) const {
VariableIndex variableIndex(graph);
GaussianFactorGraph::shared_ptr hfg = boost::make_shared<GaussianFactorGraph>();
// Collect all factors involving constrained vars
FastSet<size_t> factors;
BOOST_FOREACH(Key key, constrainedVars) {
VariableIndex::Factors factorsOfThisVar = variableIndex[key];
BOOST_FOREACH(size_t factorIndex, factorsOfThisVar) {
factors.insert(factorIndex);
}
}
// Convert each factor into Hessian
BOOST_FOREACH(size_t factorIndex, factors) {
if (!graph[factorIndex]) continue;
// See if this is a Jacobian factor
JacobianFactor::shared_ptr jf = toJacobian(graph[factorIndex]);
if (jf) {
// Dealing with mixed constrained factor
if (jf->get_model() && jf->isConstrained()) {
// Turn a mixed-constrained factor into a factor with 0 information on the constrained part
Vector sigmas = jf->get_model()->sigmas();
Vector newPrecisions(sigmas.size());
bool mixed = false;
for (size_t s=0; s<sigmas.size(); ++s) {
if (sigmas[s] <= 1e-9) newPrecisions[s] = 0.0; // 0 info for constraints (both ineq and eq)
else {
newPrecisions[s] = 1.0/sigmas[s];
mixed = true;
}
}
if (mixed) { // only add free hessians if it's mixed
JacobianFactor::shared_ptr newJacobian = toJacobian(jf->clone());
newJacobian->setModel(noiseModel::Diagonal::Precisions(newPrecisions));
hfg->push_back(HessianFactor(*newJacobian));
}
}
else { // unconstrained Jacobian
// Convert the original linear factor to Hessian factor
hfg->push_back(HessianFactor(*graph[factorIndex]));
}
}
else { // If it's not a Jacobian, it should be a hessian factor. Just add!
hfg->push_back(graph[factorIndex]);
}
}
return hfg;
}
/* ************************************************************************* */
/**
* Build the dual graph to solve for the Lagrange multipliers.
*
* The Lagrangian function is:
* L(X,lambdas) = f(X) - \sum_k lambda_k * c_k(X),
* where the unconstrained part is
* f(X) = 0.5*X'*G*X - X'*g + 0.5*f0
* and the linear equality constraints are
* c1(X), c2(X), ..., cm(X)
*
* Take the derivative of L wrt X at the solution and set it to 0, we have
* \grad f(X) = \sum_k lambda_k * \grad c_k(X) (*)
*
* For each set of rows of (*) corresponding to a variable xi involving in some constraints
* we have:
* \grad f(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
* \grad c_k(xi) = \frac{\partial c_k}{\partial xi}'
*
* Note: If xi does not involve in any constraint, we have the trivial condition
* \grad f(Xi) = 0, which should be satisfied as a usual condition for unconstrained variables.
*
* So each variable xi involving in some constraints becomes a linear factor A*lambdas - b = 0
* on the constraints' lambda multipliers, as follows:
* - The jacobian term A_k for each lambda_k is \grad c_k(xi)
* - The constant term b is \grad f(xi), which can be computed from all unconstrained
* Hessian factors connecting to xi: \grad f(xi) = \sum_j G_ij*xj - gi
*/
GaussianFactorGraph buildDualGraph(const GaussianFactorGraph& graph,
const VectorValues& x0) const {
// The dual graph to return
GaussianFactorGraph dualGraph;
// For each variable xi involving in some constraint, compute the unconstrained gradient
// wrt xi from the prebuilt freeHessian graph
// \grad f(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
BOOST_FOREACH(const VariableIndex::value_type& xiKey_factors, freeHessianFactorIndex_) {
Key xiKey = xiKey_factors.first;
VariableIndex::Factors xiFactors = xiKey_factors.second;
// Find xi's dim from the first factor on xi
if (xiFactors.size() == 0) continue;
GaussianFactor::shared_ptr xiFactor0 = freeHessians_->at(0);
size_t xiDim = xiFactor0->getDim(xiFactor0->find(xiKey));
// Compute gradf(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
Vector gradf_xi = zero(xiDim);
BOOST_FOREACH(size_t factorIx, xiFactors) {
HessianFactor::shared_ptr factor = toHessian(freeHessians_->at(factorIx));
Factor::const_iterator xi = factor->find(xiKey);
// Sum over Gij*xj for all xj connecting to xi
for (Factor::const_iterator xj = factor->begin(); xj != factor->end();
++xj) {
// Obtain Gij from the Hessian factor
// Hessian factor only stores an upper triangular matrix, so be careful when i>j
Matrix Gij;
if (xi > xj) {
Matrix Gji = factor->info(xj, xi);
Gij = Gji.transpose();
}
else {
Gij = factor->info(xi, xj);
}
// Accumulate Gij*xj to gradf
Vector x0_j = x0.at(*xj);
gradf_xi += Gij * x0_j;
}
// Subtract the linear term gi
gradf_xi += -factor->linearTerm(xi);
}
// Obtain the jacobians for lambda variables from their corresponding constraints
// gradc_k(xi) = \frac{\partial c_k}{\partial xi}'
std::vector<std::pair<Key, Matrix> > lambdaTerms; // collection of lambda_k, and gradc_k
BOOST_FOREACH(size_t factorIndex, fullFactorIndices_[xiKey]) {
JacobianFactor::shared_ptr factor = toJacobian(graph.at(factorIndex));
if (!factor || !factor->isConstrained()) continue;
// Gradient is the transpose of the Jacobian: A_k = gradc_k(xi) = \frac{\partial c_k}{\partial xi}'
// Each column for each lambda_k corresponds to [the transpose of] each constrained row factor
Matrix A_k = factor->getA(factor->find(xiKey)).transpose();
// Deal with mixed sigmas: no information if sigma != 0
Vector sigmas = factor->get_model()->sigmas();
for (size_t sigmaIx = 0; sigmaIx<sigmas.size(); ++sigmaIx) {
// if it's either ineq (sigma<0) or unconstrained (sigma>0)
// we have no information about it
if (fabs(sigmas[sigmaIx]) > 1e-9) {
A_k.col(sigmaIx) = zero(A_k.rows());
}
}
// Use factorIndex as the lambda's key.
lambdaTerms.push_back(make_pair(factorIndex, A_k));
}
// Enforce constrained noise model so lambdas are solved with QR
// and should exactly satisfy all the equations
dualGraph.push_back(JacobianFactor(lambdaTerms, gradf_xi,
noiseModel::Constrained::All(gradf_xi.size())));
// Add 0 priors on all lambdas to make sure the graph is solvable
// TODO: Can we do for all lambdas like this, or only for those with no information?
BOOST_FOREACH(size_t factorIndex, fullFactorIndices_[xiKey]) {
JacobianFactor::shared_ptr factor = toJacobian(graph.at(factorIndex));
if (!factor || !factor->isConstrained()) continue;
size_t dim= factor->get_model()->dim();
// Use factorIndex as the lambda's key.
dualGraph.push_back(JacobianFactor(factorIndex, eye(dim), zero(dim)));
}
}
return dualGraph;
}
/**
* Find max lambda element.
* For active ineq constraints (those that are enforced as eq constraints now
* in the working set), we want lambda < 0.
* This is because:
* - From the Lagrangian L = f - lambda*c, we know that the constraint force is
* (lambda * \grad c) = \grad f, because it cancels out the unconstrained
* unconstrained force (-\grad f), which is pulling x in the opposite direction
* of \grad f towards the unconstrained minimum point
* - We also know that at the constraint surface \grad c points toward + (>= 0),
* while we are solving for - (<=0) constraint
* - So, we want the constraint force (lambda * \grad c) to to pull x
* towards the opposite direction of \grad c, i.e. towards the area
* where the ineq constraint <=0 is satisfied.
* - Hence, we want lambda < 0
*/
std::pair<int, int> findWeakestViolationIneq(const VectorValues& lambdas) const {
int worstFactorIx = -1, worstSigmaIx = -1;
// preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either
// inactive or a good ineq constraint, so we don't care!
double maxLambda = 0.0;
BOOST_FOREACH(size_t factorIx, constraintIndices_) {
Vector lambda = lambdas.at(factorIx);
Vector orgSigmas = toJacobian(graph_.at(factorIx))->get_model()->sigmas();
for (size_t j = 0; j<orgSigmas.size(); ++j)
// If it is a BAD active inequality, and lambda is larger than the current max
if (orgSigmas[j]<0 && lambda[j] > maxLambda) {
worstFactorIx = factorIx;
worstSigmaIx = j;
maxLambda = lambda[j];
}
}
return make_pair(worstFactorIx, worstSigmaIx);
}
/**
* Deactivate or activate an ineq constraint in place
* Warning: modify in-place to avoid copy/clone
* @return true if update successful
*/
bool updateWorkingSetInplace(GaussianFactorGraph& workingGraph,
int factorIx, int sigmaIx, double newSigma) const {
if (factorIx < 0 || sigmaIx < 0)
return false;
Vector sigmas = toJacobian(workingGraph.at(factorIx))->get_model()->sigmas();
sigmas[sigmaIx] = newSigma; // removing it from the working set
toJacobian(workingGraph.at(factorIx))->setModel(true, sigmas);
return true;
}
/**
* Compute step size alpha for the new solution x' = xk + alpha*p, where alpha \in [0,1]
* We have to make sure the new solution with alpha satisfies all INACTIVE ineq constraints
* If some inactive ineq constraints complain about the full step (alpha = 1),
* we have to adjust alpha to stay within the ineq constraints' feasible regions.
*
* For each inactive ineq j:
* - We already have: aj'*xk - bj <= 0, since xk satisfies all ineq constraints
* - We want: aj'*(xk + alpha*p) - bj <= 0
* - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0
* it's good!
* - We only care when aj'*p > 0. In this case, we need to choose alpha so that
* aj'*xk + alpha*aj'*p - bj <= 0 --> alpha <= (bj - aj'*xk) / (aj'*p)
* We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p)
*
* We want the minimum of all those alphas among all inactive ineq.
*
* @return a tuple of (alpha, factorIndex, sigmaIndex) where (factorIndex, sigmaIndex)
* is the constraint that has minimum alpha, or (-1,-1) if alpha = 1.
* This constraint will be added to the working set and become active
* in the next iteration
*/
boost::tuple<double, int, int> computeStepSize(const GaussianFactorGraph& workingGraph,
const VectorValues& xk, const VectorValues& p) const {
static bool debug = true;
double minAlpha = 1.0;
int closestFactorIx = -1, closestSigmaIx = -1;
BOOST_FOREACH(size_t factorIx, constraintIndices_) {
JacobianFactor::shared_ptr jacobian = toJacobian(workingGraph.at(factorIx));
Vector sigmas = jacobian->get_model()->sigmas();
Vector b = jacobian->getb();
for (size_t s = 0; s<sigmas.size(); ++s) {
// If it is an inactive inequality, compute alpha and update min
if (sigmas[s]<0) {
// Compute aj'*p
double ajTp = 0.0;
for (Factor::const_iterator xj = jacobian->begin(); xj != jacobian->end(); ++xj) {
Vector pj = p.at(*xj);
Vector aj = jacobian->getA(xj).row(s);
ajTp += aj.dot(pj);
}
if (debug) {
cout << "s, ajTp: " << s << " " << ajTp << endl;
}
// Check if aj'*p >0. Don't care if it's not.
if (ajTp<=0) continue;
// Compute aj'*xk
double ajTx = 0.0;
for (Factor::const_iterator xj = jacobian->begin(); xj != jacobian->end(); ++xj) {
Vector xkj = xk.at(*xj);
Vector aj = jacobian->getA(xj).row(s);
ajTx += aj.dot(xkj);
}
if (debug) {
cout << "b[s], ajTx: " << b[s] << " " << ajTx << " " << ajTp << endl;
}
// alpha = (bj - aj'*xk) / (aj'*p)
double alpha = (b[s] - ajTx)/ajTp;
if (debug) {
cout << "alpha: " << alpha << endl;
}
// We want the minimum of all those max alphas
if (alpha < minAlpha) {
closestFactorIx = factorIx;
closestSigmaIx = s;
minAlpha = alpha;
}
}
}
}
return boost::make_tuple(minAlpha, closestFactorIx, closestSigmaIx);
}
/** Iterate 1 step, modify workingGraph and currentSolution in place */
bool iterateInPlace(GaussianFactorGraph& workingGraph, VectorValues& currentSolution) const {
static bool debug = true;
// Obtain the solution from the current working graph
VectorValues newSolution = workingGraph.optimize();
if (debug) newSolution.print("New solution:");
// If we CAN'T move further
if (newSolution.equals(currentSolution, 1e-5)) {
// Compute lambda from the dual graph
GaussianFactorGraph dualGraph = buildDualGraph(workingGraph, newSolution);
if (debug) dualGraph.print("Dual graph: ");
VectorValues lambdas = dualGraph.optimize();
if (debug) lambdas.print("lambdas :");
int factorIx, sigmaIx;
boost::tie(factorIx, sigmaIx) = findWeakestViolationIneq(lambdas);
// Try to disactivate the weakest violated ineq constraints
// if not successful, i.e. all ineq constraints are satisfied: We have the solution!!
if (!updateWorkingSetInplace(workingGraph, factorIx, sigmaIx, -1.0))
return true;
}
else {
// If we CAN make some progress
// Adapt stepsize if some inactive inequality constraints complain about this move
double alpha;
int factorIx, sigmaIx;
VectorValues p = newSolution - currentSolution;
boost::tie(alpha, factorIx, sigmaIx) = computeStepSize(workingGraph, currentSolution, p);
if (debug) {
cout << "alpha, factorIx, sigmaIx: " << alpha << " " << factorIx << " " << sigmaIx << endl;
}
// also add to the working set the one that complains the most
updateWorkingSetInplace(workingGraph, factorIx, sigmaIx, 0.0);
// step!
currentSolution = currentSolution + alpha * p;
}
return false;
}
VectorValues optimize(const VectorValues& initials) const {
GaussianFactorGraph workingGraph = graph_.clone();
VectorValues currentSolution = initials;
bool converged = false;
while (!converged) {
converged = iterateInPlace(workingGraph, currentSolution);
}
return currentSolution;
}
};
/* ************************************************************************* */
// Create test graph according to Forst10book_pg171Ex5
GaussianFactorGraph createTestCase() {
@ -462,7 +55,7 @@ GaussianFactorGraph createTestCase() {
return graph;
}
TEST_DISABLED(QPSolver, constraintsAux) {
TEST(QPSolver, constraintsAux) {
GaussianFactorGraph graph = createTestCase();
QPSolver solver(graph);
FastVector<size_t> constraintIx = solver.constraintIndices();
@ -472,14 +65,14 @@ TEST_DISABLED(QPSolver, constraintsAux) {
VectorValues lambdas;
lambdas.insert(constraintIx[0], (Vector(4)<< -0.5, 0.0, 0.3, 0.1));
int factorIx, lambdaIx;
boost::tie(factorIx, lambdaIx) = solver.findWeakestViolationIneq(lambdas);
boost::tie(factorIx, lambdaIx) = solver.findWorstViolatedActiveIneq(lambdas);
LONGS_EQUAL(1, factorIx);
LONGS_EQUAL(2, lambdaIx);
VectorValues lambdas2;
lambdas2.insert(constraintIx[0], (Vector(4)<< -0.5, 0.0, -0.3, -0.1));
int factorIx2, lambdaIx2;
boost::tie(factorIx2, lambdaIx2) = solver.findWeakestViolationIneq(lambdas2);
boost::tie(factorIx2, lambdaIx2) = solver.findWorstViolatedActiveIneq(lambdas2);
LONGS_EQUAL(-1, factorIx2);
LONGS_EQUAL(-1, lambdaIx2);