Merge pull request #1831 from borglab/hybrid-error-scalars

release/4.3a0
Varun Agrawal 2024-09-18 16:17:40 -04:00 committed by GitHub
commit f7b5f3c22c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
26 changed files with 645 additions and 255 deletions

View File

@ -55,23 +55,14 @@ HybridGaussianConditional::conditionals() const {
return conditionals_;
}
/* *******************************************************************************/
HybridGaussianConditional::HybridGaussianConditional(
KeyVector &&continuousFrontals, KeyVector &&continuousParents,
DiscreteKeys &&discreteParents,
std::vector<GaussianConditional::shared_ptr> &&conditionals)
: HybridGaussianConditional(continuousFrontals, continuousParents,
discreteParents,
Conditionals(discreteParents, conditionals)) {}
/* *******************************************************************************/
HybridGaussianConditional::HybridGaussianConditional(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const DiscreteKey &discreteParent,
const std::vector<GaussianConditional::shared_ptr> &conditionals)
: HybridGaussianConditional(continuousFrontals, continuousParents,
discreteParents,
Conditionals(discreteParents, conditionals)) {}
DiscreteKeys{discreteParent},
Conditionals({discreteParent}, conditionals)) {}
/* *******************************************************************************/
// TODO(dellaert): This is copy/paste: HybridGaussianConditional should be
@ -219,23 +210,20 @@ std::shared_ptr<HybridGaussianFactor> HybridGaussianConditional::likelihood(
const DiscreteKeys discreteParentKeys = discreteKeys();
const KeyVector continuousParentKeys = continuousParents();
const HybridGaussianFactor::Factors likelihoods(
conditionals_, [&](const GaussianConditional::shared_ptr &conditional) {
const HybridGaussianFactor::FactorValuePairs likelihoods(
conditionals_,
[&](const GaussianConditional::shared_ptr &conditional)
-> GaussianFactorValuePair {
const auto likelihood_m = conditional->likelihood(given);
const double Cgm_Kgcm =
logConstant_ - conditional->logNormalizationConstant();
if (Cgm_Kgcm == 0.0) {
return likelihood_m;
return {likelihood_m, 0.0};
} else {
// Add a constant factor to the likelihood in case the noise models
// Add a constant to the likelihood in case the noise models
// are not all equal.
GaussianFactorGraph gfg;
gfg.push_back(likelihood_m);
Vector c(1);
c << std::sqrt(2.0 * Cgm_Kgcm);
auto constantFactor = std::make_shared<JacobianFactor>(c);
gfg.push_back(constantFactor);
return std::make_shared<JacobianFactor>(gfg);
double c = 2.0 * Cgm_Kgcm;
return {likelihood_m, c};
}
});
return std::make_shared<HybridGaussianFactor>(

View File

@ -107,29 +107,18 @@ class GTSAM_EXPORT HybridGaussianConditional
const Conditionals &conditionals);
/**
* @brief Make a Gaussian Mixture from a list of Gaussian conditionals
* @brief Make a Gaussian Mixture from a vector of Gaussian conditionals.
* The DecisionTree-based constructor is preferred over this one.
*
* @param continuousFrontals The continuous frontal variables
* @param continuousParents The continuous parent variables
* @param discreteParents Discrete parents variables
* @param conditionals List of conditionals
*/
HybridGaussianConditional(
KeyVector &&continuousFrontals, KeyVector &&continuousParents,
DiscreteKeys &&discreteParents,
std::vector<GaussianConditional::shared_ptr> &&conditionals);
/**
* @brief Make a Gaussian Mixture from a list of Gaussian conditionals
*
* @param continuousFrontals The continuous frontal variables
* @param continuousParents The continuous parent variables
* @param discreteParents Discrete parents variables
* @param conditionals List of conditionals
* @param discreteParent Single discrete parent variable
* @param conditionals Vector of conditionals with the same size as the
* cardinality of the discrete parent.
*/
HybridGaussianConditional(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const DiscreteKey &discreteParent,
const std::vector<GaussianConditional::shared_ptr> &conditionals);
/// @}

View File

@ -28,11 +28,56 @@
namespace gtsam {
/**
* @brief Helper function to augment the [A|b] matrices in the factor components
* with the normalizer values.
* This is done by storing the normalizer value in
* the `b` vector as an additional row.
*
* @param factors DecisionTree of GaussianFactors and arbitrary scalars.
* Gaussian factor in factors.
* @return HybridGaussianFactor::Factors
*/
HybridGaussianFactor::Factors augment(
const HybridGaussianFactor::FactorValuePairs &factors) {
// Find the minimum value so we can "proselytize" to positive values.
// Done because we can't have sqrt of negative numbers.
HybridGaussianFactor::Factors gaussianFactors;
AlgebraicDecisionTree<Key> valueTree;
std::tie(gaussianFactors, valueTree) = unzip(factors);
// Normalize
double min_value = valueTree.min();
AlgebraicDecisionTree<Key> values =
valueTree.apply([&min_value](double n) { return n - min_value; });
// Finally, update the [A|b] matrices.
auto update = [&values](const Assignment<Key> &assignment,
const HybridGaussianFactor::sharedFactor &gf) {
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
if (!jf) return gf;
// If the log_normalizer is 0, do nothing
if (values(assignment) == 0.0) return gf;
GaussianFactorGraph gfg;
gfg.push_back(jf);
Vector c(1);
c << std::sqrt(values(assignment));
auto constantFactor = std::make_shared<JacobianFactor>(c);
gfg.push_back(constantFactor);
return std::dynamic_pointer_cast<GaussianFactor>(
std::make_shared<JacobianFactor>(gfg));
};
return gaussianFactors.apply(update);
}
/* *******************************************************************************/
HybridGaussianFactor::HybridGaussianFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors)
: Base(continuousKeys, discreteKeys), factors_(factors) {}
const FactorValuePairs &factors)
: Base(continuousKeys, discreteKeys), factors_(augment(factors)) {}
/* *******************************************************************************/
bool HybridGaussianFactor::equals(const HybridFactor &lf, double tol) const {

View File

@ -33,6 +33,9 @@ class HybridValues;
class DiscreteValues;
class VectorValues;
/// Alias for pair of GaussianFactor::shared_pointer and a double value.
using GaussianFactorValuePair = std::pair<GaussianFactor::shared_ptr, double>;
/**
* @brief Implementation of a discrete conditional mixture factor.
* Implements a joint discrete-continuous factor where the discrete variable
@ -52,7 +55,9 @@ class GTSAM_EXPORT HybridGaussianFactor : public HybridFactor {
using sharedFactor = std::shared_ptr<GaussianFactor>;
/// typedef for Decision Tree of Gaussian factors and log-constant.
/// typedef for Decision Tree of Gaussian factors and arbitrary value.
using FactorValuePairs = DecisionTree<Key, GaussianFactorValuePair>;
/// typedef for Decision Tree of Gaussian factors.
using Factors = DecisionTree<Key, sharedFactor>;
private:
@ -80,26 +85,26 @@ class GTSAM_EXPORT HybridGaussianFactor : public HybridFactor {
* @param continuousKeys A vector of keys representing continuous variables.
* @param discreteKeys A vector of keys representing discrete variables and
* their cardinalities.
* @param factors The decision tree of Gaussian factors stored
* as the mixture density.
* @param factors The decision tree of Gaussian factors and arbitrary scalars.
*/
HybridGaussianFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors);
const FactorValuePairs &factors);
/**
* @brief Construct a new HybridGaussianFactor object using a vector of
* GaussianFactor shared pointers.
*
* @param continuousKeys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Vector of gaussian factor shared pointers.
* @param discreteKey The discrete key to index each component.
* @param factors Vector of gaussian factor shared pointers
* and arbitrary scalars. Same size as the cardinality of discreteKey.
*/
HybridGaussianFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const std::vector<sharedFactor> &factors)
: HybridGaussianFactor(continuousKeys, discreteKeys,
Factors(discreteKeys, factors)) {}
const DiscreteKey &discreteKey,
const std::vector<GaussianFactorValuePair> &factors)
: HybridGaussianFactor(continuousKeys, {discreteKey},
FactorValuePairs({discreteKey}, factors)) {}
/// @}
/// @name Testable

View File

@ -92,13 +92,13 @@ void HybridGaussianFactorGraph::printErrors(
// Clear the stringstream
ss.str(std::string());
if (auto gmf = std::dynamic_pointer_cast<HybridGaussianFactor>(factor)) {
if (auto hgf = std::dynamic_pointer_cast<HybridGaussianFactor>(factor)) {
if (factor == nullptr) {
std::cout << "nullptr"
<< "\n";
} else {
gmf->operator()(values.discrete())->print(ss.str(), keyFormatter);
std::cout << "error = " << gmf->error(values) << std::endl;
hgf->operator()(values.discrete())->print(ss.str(), keyFormatter);
std::cout << "error = " << factor->error(values) << std::endl;
}
} else if (auto hc = std::dynamic_pointer_cast<HybridConditional>(factor)) {
if (factor == nullptr) {
@ -348,7 +348,7 @@ static std::shared_ptr<Factor> createHybridGaussianFactor(
const KeyVector &continuousSeparator,
const DiscreteKeys &discreteSeparator) {
// Correct for the normalization constant used up by the conditional
auto correct = [&](const Result &pair) -> GaussianFactor::shared_ptr {
auto correct = [&](const Result &pair) -> GaussianFactorValuePair {
const auto &[conditional, factor] = pair;
if (factor) {
auto hf = std::dynamic_pointer_cast<HessianFactor>(factor);
@ -357,10 +357,10 @@ static std::shared_ptr<Factor> createHybridGaussianFactor(
// as per the Hessian definition
hf->constantTerm() += 2.0 * conditional->logNormalizationConstant();
}
return factor;
return {factor, 0.0};
};
DecisionTree<Key, GaussianFactor::shared_ptr> newFactors(eliminationResults,
correct);
DecisionTree<Key, GaussianFactorValuePair> newFactors(eliminationResults,
correct);
return std::make_shared<HybridGaussianFactor>(continuousSeparator,
discreteSeparator, newFactors);
@ -597,10 +597,10 @@ GaussianFactorGraph HybridGaussianFactorGraph::operator()(
gfg.push_back(gf);
} else if (auto gc = std::dynamic_pointer_cast<GaussianConditional>(f)) {
gfg.push_back(gf);
} else if (auto gmf = std::dynamic_pointer_cast<HybridGaussianFactor>(f)) {
gfg.push_back((*gmf)(assignment));
} else if (auto gm = dynamic_pointer_cast<HybridGaussianConditional>(f)) {
gfg.push_back((*gm)(assignment));
} else if (auto hgf = std::dynamic_pointer_cast<HybridGaussianFactor>(f)) {
gfg.push_back((*hgf)(assignment));
} else if (auto hgc = dynamic_pointer_cast<HybridGaussianConditional>(f)) {
gfg.push_back((*hgc)(assignment));
} else {
continue;
}

View File

@ -33,6 +33,9 @@
namespace gtsam {
/// Alias for a NonlinearFactor shared pointer and double scalar pair.
using NonlinearFactorValuePair = std::pair<NonlinearFactor::shared_ptr, double>;
/**
* @brief Implementation of a discrete conditional mixture factor.
*
@ -53,9 +56,9 @@ class HybridNonlinearFactor : public HybridFactor {
/**
* @brief typedef for DecisionTree which has Keys as node labels and
* NonlinearFactor as leaf nodes.
* pairs of NonlinearFactor & an arbitrary scalar as leaf nodes.
*/
using Factors = DecisionTree<Key, sharedFactor>;
using Factors = DecisionTree<Key, NonlinearFactorValuePair>;
private:
/// Decision tree of Gaussian factors indexed by discrete keys.
@ -89,32 +92,34 @@ class HybridNonlinearFactor : public HybridFactor {
* @tparam FACTOR The type of the factor shared pointers being passed in.
* Will be typecast to NonlinearFactor shared pointers.
* @param keys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Vector of nonlinear factors.
* @param discreteKey The discrete key indexing each component factor.
* @param factors Vector of nonlinear factor and scalar pairs.
* Same size as the cardinality of discreteKey.
* @param normalized Flag indicating if the factor error is already
* normalized.
*/
template <typename FACTOR>
HybridNonlinearFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
const std::vector<std::shared_ptr<FACTOR>>& factors,
bool normalized = false)
: Base(keys, discreteKeys), normalized_(normalized) {
std::vector<NonlinearFactor::shared_ptr> nonlinear_factors;
HybridNonlinearFactor(
const KeyVector& keys, const DiscreteKey& discreteKey,
const std::vector<std::pair<std::shared_ptr<FACTOR>, double>>& factors,
bool normalized = false)
: Base(keys, {discreteKey}), normalized_(normalized) {
std::vector<NonlinearFactorValuePair> nonlinear_factors;
KeySet continuous_keys_set(keys.begin(), keys.end());
KeySet factor_keys_set;
for (auto&& f : factors) {
for (auto&& [f, val] : factors) {
// Insert all factor continuous keys in the continuous keys set.
std::copy(f->keys().begin(), f->keys().end(),
std::inserter(factor_keys_set, factor_keys_set.end()));
if (auto nf = std::dynamic_pointer_cast<NonlinearFactor>(f)) {
nonlinear_factors.push_back(nf);
nonlinear_factors.emplace_back(nf, val);
} else {
throw std::runtime_error(
"Factors passed into HybridNonlinearFactor need to be nonlinear!");
}
}
factors_ = Factors(discreteKeys, nonlinear_factors);
factors_ = Factors({discreteKey}, nonlinear_factors);
if (continuous_keys_set != factor_keys_set) {
throw std::runtime_error(
@ -133,9 +138,11 @@ class HybridNonlinearFactor : public HybridFactor {
*/
AlgebraicDecisionTree<Key> errorTree(const Values& continuousValues) const {
// functor to convert from sharedFactor to double error value.
auto errorFunc = [continuousValues](const sharedFactor& factor) {
return factor->error(continuousValues);
};
auto errorFunc =
[continuousValues](const std::pair<sharedFactor, double>& f) {
auto [factor, val] = f;
return factor->error(continuousValues) + (0.5 * val);
};
DecisionTree<Key, double> result(factors_, errorFunc);
return result;
}
@ -150,12 +157,10 @@ class HybridNonlinearFactor : public HybridFactor {
double error(const Values& continuousValues,
const DiscreteValues& discreteValues) const {
// Retrieve the factor corresponding to the assignment in discreteValues.
auto factor = factors_(discreteValues);
auto [factor, val] = factors_(discreteValues);
// Compute the error for the selected factor
const double factorError = factor->error(continuousValues);
if (normalized_) return factorError;
return factorError + this->nonlinearFactorLogNormalizingConstant(
factor, continuousValues);
return factorError + (0.5 * val);
}
/**
@ -175,7 +180,7 @@ class HybridNonlinearFactor : public HybridFactor {
*/
size_t dim() const {
const auto assignments = DiscreteValues::CartesianProduct(discreteKeys_);
auto factor = factors_(assignments.at(0));
auto [factor, val] = factors_(assignments.at(0));
return factor->dim();
}
@ -189,9 +194,11 @@ class HybridNonlinearFactor : public HybridFactor {
std::cout << (s.empty() ? "" : s + " ");
Base::print("", keyFormatter);
std::cout << "\nHybridNonlinearFactor\n";
auto valueFormatter = [](const sharedFactor& v) {
if (v) {
return "Nonlinear factor on " + std::to_string(v->size()) + " keys";
auto valueFormatter = [](const std::pair<sharedFactor, double>& v) {
auto [factor, val] = v;
if (factor) {
return "Nonlinear factor on " + std::to_string(factor->size()) +
" keys";
} else {
return std::string("nullptr");
}
@ -211,8 +218,10 @@ class HybridNonlinearFactor : public HybridFactor {
static_cast<const HybridNonlinearFactor&>(other));
// Ensure that this HybridNonlinearFactor and `f` have the same `factors_`.
auto compare = [tol](const sharedFactor& a, const sharedFactor& b) {
return traits<NonlinearFactor>::Equals(*a, *b, tol);
auto compare = [tol](const std::pair<sharedFactor, double>& a,
const std::pair<sharedFactor, double>& b) {
return traits<NonlinearFactor>::Equals(*a.first, *b.first, tol) &&
(a.second == b.second);
};
if (!factors_.equals(f.factors_, compare)) return false;
@ -230,7 +239,7 @@ class HybridNonlinearFactor : public HybridFactor {
GaussianFactor::shared_ptr linearize(
const Values& continuousValues,
const DiscreteValues& discreteValues) const {
auto factor = factors_(discreteValues);
auto factor = factors_(discreteValues).first;
return factor->linearize(continuousValues);
}
@ -238,12 +247,15 @@ class HybridNonlinearFactor : public HybridFactor {
std::shared_ptr<HybridGaussianFactor> linearize(
const Values& continuousValues) const {
// functional to linearize each factor in the decision tree
auto linearizeDT = [continuousValues](const sharedFactor& factor) {
return factor->linearize(continuousValues);
auto linearizeDT =
[continuousValues](const std::pair<sharedFactor, double>& f)
-> GaussianFactorValuePair {
auto [factor, val] = f;
return {factor->linearize(continuousValues), val};
};
DecisionTree<Key, GaussianFactor::shared_ptr> linearized_factors(
factors_, linearizeDT);
DecisionTree<Key, std::pair<GaussianFactor::shared_ptr, double>>
linearized_factors(factors_, linearizeDT);
return std::make_shared<HybridGaussianFactor>(
continuousKeys_, discreteKeys_, linearized_factors);

View File

@ -76,8 +76,9 @@ virtual class HybridConditional {
class HybridGaussianFactor : gtsam::HybridFactor {
HybridGaussianFactor(
const gtsam::KeyVector& continuousKeys,
const gtsam::DiscreteKeys& discreteKeys,
const std::vector<gtsam::GaussianFactor::shared_ptr>& factorsList);
const gtsam::DiscreteKey& discreteKey,
const std::vector<std::pair<gtsam::GaussianFactor::shared_ptr, double>>&
factorsList);
void print(string s = "HybridGaussianFactor\n",
const gtsam::KeyFormatter& keyFormatter =
@ -90,8 +91,12 @@ class HybridGaussianConditional : gtsam::HybridFactor {
const gtsam::KeyVector& continuousFrontals,
const gtsam::KeyVector& continuousParents,
const gtsam::DiscreteKeys& discreteParents,
const std::vector<gtsam::GaussianConditional::shared_ptr>&
conditionalsList);
const gtsam::HybridGaussianConditional::Conditionals& conditionals);
HybridGaussianConditional(
const gtsam::KeyVector& continuousFrontals,
const gtsam::KeyVector& continuousParents,
const gtsam::DiscreteKey& discreteParent,
const std::vector<gtsam::GaussianConditional::shared_ptr>& conditionals);
gtsam::HybridGaussianFactor* likelihood(
const gtsam::VectorValues& frontals) const;
@ -242,14 +247,14 @@ class HybridNonlinearFactorGraph {
class HybridNonlinearFactor : gtsam::HybridFactor {
HybridNonlinearFactor(
const gtsam::KeyVector& keys, const gtsam::DiscreteKeys& discreteKeys,
const gtsam::DecisionTree<gtsam::Key, gtsam::NonlinearFactor*>& factors,
const gtsam::DecisionTree<
gtsam::Key, std::pair<gtsam::NonlinearFactor*, double>>& factors,
bool normalized = false);
template <FACTOR = {gtsam::NonlinearFactor}>
HybridNonlinearFactor(const gtsam::KeyVector& keys,
const gtsam::DiscreteKeys& discreteKeys,
const std::vector<FACTOR*>& factors,
bool normalized = false);
HybridNonlinearFactor(
const gtsam::KeyVector& keys, const gtsam::DiscreteKey& discreteKey,
const std::vector<std::pair<gtsam::NonlinearFactor*, double>>& factors,
bool normalized = false);
double error(const gtsam::Values& continuousValues,
const gtsam::DiscreteValues& discreteValues) const;

View File

@ -57,12 +57,16 @@ inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
// keyFunc(1) to keyFunc(n+1)
for (size_t t = 1; t < n; t++) {
hfg.add(HybridGaussianFactor(
{keyFunc(t), keyFunc(t + 1)}, {{dKeyFunc(t), 2}},
{std::make_shared<JacobianFactor>(keyFunc(t), I_3x3, keyFunc(t + 1),
I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(keyFunc(t), I_3x3, keyFunc(t + 1),
I_3x3, Vector3::Ones())}));
DiscreteKeys dKeys{{dKeyFunc(t), 2}};
HybridGaussianFactor::FactorValuePairs components(
dKeys, {{std::make_shared<JacobianFactor>(keyFunc(t), I_3x3,
keyFunc(t + 1), I_3x3, Z_3x1),
0.0},
{std::make_shared<JacobianFactor>(
keyFunc(t), I_3x3, keyFunc(t + 1), I_3x3, Vector3::Ones()),
0.0}});
hfg.add(
HybridGaussianFactor({keyFunc(t), keyFunc(t + 1)}, dKeys, components));
if (t > 1) {
hfg.add(DecisionTreeFactor({{dKeyFunc(t - 1), 2}, {dKeyFunc(t), 2}},
@ -159,12 +163,13 @@ struct Switching {
for (size_t k = 0; k < K - 1; k++) {
KeyVector keys = {X(k), X(k + 1)};
auto motion_models = motionModels(k, between_sigma);
std::vector<NonlinearFactor::shared_ptr> components;
std::vector<NonlinearFactorValuePair> components;
for (auto &&f : motion_models) {
components.push_back(std::dynamic_pointer_cast<NonlinearFactor>(f));
components.push_back(
{std::dynamic_pointer_cast<NonlinearFactor>(f), 0.0});
}
nonlinearFactorGraph.emplace_shared<HybridNonlinearFactor>(
keys, DiscreteKeys{modes[k]}, components);
nonlinearFactorGraph.emplace_shared<HybridNonlinearFactor>(keys, modes[k],
components);
}
// Add measurement factors

View File

@ -43,12 +43,11 @@ inline HybridBayesNet createHybridBayesNet(size_t num_measurements = 1,
// Create Gaussian mixture z_i = x0 + noise for each measurement.
for (size_t i = 0; i < num_measurements; i++) {
const auto mode_i = manyModes ? DiscreteKey{M(i), 2} : mode;
std::vector<GaussianConditional::shared_ptr> conditionals{
GaussianConditional::sharedMeanAndStddev(Z(i), I_1x1, X(0), Z_1x1, 0.5),
GaussianConditional::sharedMeanAndStddev(Z(i), I_1x1, X(0), Z_1x1, 3)};
bayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{Z(i)}, KeyVector{X(0)}, DiscreteKeys{mode_i},
std::vector{GaussianConditional::sharedMeanAndStddev(Z(i), I_1x1, X(0),
Z_1x1, 0.5),
GaussianConditional::sharedMeanAndStddev(Z(i), I_1x1, X(0),
Z_1x1, 3)});
KeyVector{Z(i)}, KeyVector{X(0)}, mode_i, conditionals);
}
// Create prior on X(0).

View File

@ -108,7 +108,7 @@ TEST(HybridBayesNet, evaluateHybrid) {
HybridBayesNet bayesNet;
bayesNet.push_back(continuousConditional);
bayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{X(1)}, KeyVector{}, DiscreteKeys{Asia},
KeyVector{X(1)}, KeyVector{}, Asia,
std::vector{conditional0, conditional1});
bayesNet.emplace_shared<DiscreteConditional>(Asia, "99/1");
@ -169,7 +169,7 @@ TEST(HybridBayesNet, Error) {
X(1), Vector1::Constant(2), I_1x1, model1);
auto gm = std::make_shared<HybridGaussianConditional>(
KeyVector{X(1)}, KeyVector{}, DiscreteKeys{Asia},
KeyVector{X(1)}, KeyVector{}, Asia,
std::vector{conditional0, conditional1});
// Create hybrid Bayes net.
HybridBayesNet bayesNet;
@ -383,14 +383,16 @@ TEST(HybridBayesNet, Sampling) {
HybridNonlinearFactorGraph nfg;
auto noise_model = noiseModel::Diagonal::Sigmas(Vector1(1.0));
nfg.emplace_shared<PriorFactor<double>>(X(0), 0.0, noise_model);
auto zero_motion =
std::make_shared<BetweenFactor<double>>(X(0), X(1), 0, noise_model);
auto one_motion =
std::make_shared<BetweenFactor<double>>(X(0), X(1), 1, noise_model);
std::vector<NonlinearFactor::shared_ptr> factors = {zero_motion, one_motion};
nfg.emplace_shared<PriorFactor<double>>(X(0), 0.0, noise_model);
nfg.emplace_shared<HybridNonlinearFactor>(
KeyVector{X(0), X(1)}, DiscreteKeys{DiscreteKey(M(0), 2)}, factors);
KeyVector{X(0), X(1)}, DiscreteKey(M(0), 2),
std::vector<NonlinearFactorValuePair>{{zero_motion, 0.0},
{one_motion, 0.0}});
DiscreteKey mode(M(0), 2);
nfg.emplace_shared<DiscreteDistribution>(mode, "1/1");

View File

@ -435,9 +435,10 @@ static HybridNonlinearFactorGraph createHybridNonlinearFactorGraph() {
std::make_shared<BetweenFactor<double>>(X(0), X(1), 0, noise_model);
const auto one_motion =
std::make_shared<BetweenFactor<double>>(X(0), X(1), 1, noise_model);
nfg.emplace_shared<HybridNonlinearFactor>(
KeyVector{X(0), X(1)}, DiscreteKeys{m},
std::vector<NonlinearFactor::shared_ptr>{zero_motion, one_motion});
std::vector<NonlinearFactorValuePair> components = {{zero_motion, 0.0},
{one_motion, 0.0}};
nfg.emplace_shared<HybridNonlinearFactor>(KeyVector{X(0), X(1)}, m,
components);
return nfg;
}
@ -560,8 +561,13 @@ std::shared_ptr<HybridGaussianFactor> mixedVarianceFactor(
}
};
auto updated_components = gmf->factors().apply(func);
auto updated_pairs = HybridGaussianFactor::FactorValuePairs(
updated_components,
[](const GaussianFactor::shared_ptr& gf) -> GaussianFactorValuePair {
return {gf, 0.0};
});
auto updated_gmf = std::make_shared<HybridGaussianFactor>(
gmf->continuousKeys(), gmf->discreteKeys(), updated_components);
gmf->continuousKeys(), gmf->discreteKeys(), updated_pairs);
return updated_gmf;
}
@ -577,9 +583,6 @@ TEST(HybridEstimation, ModeSelection) {
graph.emplace_shared<PriorFactor<double>>(X(0), 0.0, measurement_model);
graph.emplace_shared<PriorFactor<double>>(X(1), 0.0, measurement_model);
DiscreteKeys modes;
modes.emplace_back(M(0), 2);
// The size of the noise model
size_t d = 1;
double noise_tight = 0.5, noise_loose = 5.0;
@ -588,10 +591,11 @@ TEST(HybridEstimation, ModeSelection) {
X(0), X(1), 0.0, noiseModel::Isotropic::Sigma(d, noise_loose)),
model1 = std::make_shared<MotionModel>(
X(0), X(1), 0.0, noiseModel::Isotropic::Sigma(d, noise_tight));
std::vector<NonlinearFactor::shared_ptr> components = {model0, model1};
std::vector<NonlinearFactorValuePair> components = {{model0, 0.0},
{model1, 0.0}};
KeyVector keys = {X(0), X(1)};
DiscreteKey modes(M(0), 2);
HybridNonlinearFactor mf(keys, modes, components);
initial.insert(X(0), 0.0);
@ -610,18 +614,22 @@ TEST(HybridEstimation, ModeSelection) {
/**************************************************************/
HybridBayesNet bn;
const DiscreteKey mode{M(0), 2};
const DiscreteKey mode(M(0), 2);
bn.push_back(
GaussianConditional::sharedMeanAndStddev(Z(0), -I_1x1, X(0), Z_1x1, 0.1));
bn.push_back(
GaussianConditional::sharedMeanAndStddev(Z(0), -I_1x1, X(1), Z_1x1, 0.1));
std::vector<GaussianConditional::shared_ptr> conditionals{
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), -I_1x1, X(1),
Z_1x1, noise_loose),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), -I_1x1, X(1),
Z_1x1, noise_tight)};
bn.emplace_shared<HybridGaussianConditional>(
KeyVector{Z(0)}, KeyVector{X(0), X(1)}, DiscreteKeys{mode},
std::vector{GaussianConditional::sharedMeanAndStddev(
Z(0), I_1x1, X(0), -I_1x1, X(1), Z_1x1, noise_loose),
GaussianConditional::sharedMeanAndStddev(
Z(0), I_1x1, X(0), -I_1x1, X(1), Z_1x1, noise_tight)});
HybridGaussianConditional::Conditionals(DiscreteKeys{mode},
conditionals));
VectorValues vv;
vv.insert(Z(0), Z_1x1);
@ -641,18 +649,22 @@ TEST(HybridEstimation, ModeSelection2) {
double noise_tight = 0.5, noise_loose = 5.0;
HybridBayesNet bn;
const DiscreteKey mode{M(0), 2};
const DiscreteKey mode(M(0), 2);
bn.push_back(
GaussianConditional::sharedMeanAndStddev(Z(0), -I_3x3, X(0), Z_3x1, 0.1));
bn.push_back(
GaussianConditional::sharedMeanAndStddev(Z(0), -I_3x3, X(1), Z_3x1, 0.1));
std::vector<GaussianConditional::shared_ptr> conditionals{
GaussianConditional::sharedMeanAndStddev(Z(0), I_3x3, X(0), -I_3x3, X(1),
Z_3x1, noise_loose),
GaussianConditional::sharedMeanAndStddev(Z(0), I_3x3, X(0), -I_3x3, X(1),
Z_3x1, noise_tight)};
bn.emplace_shared<HybridGaussianConditional>(
KeyVector{Z(0)}, KeyVector{X(0), X(1)}, DiscreteKeys{mode},
std::vector{GaussianConditional::sharedMeanAndStddev(
Z(0), I_3x3, X(0), -I_3x3, X(1), Z_3x1, noise_loose),
GaussianConditional::sharedMeanAndStddev(
Z(0), I_3x3, X(0), -I_3x3, X(1), Z_3x1, noise_tight)});
HybridGaussianConditional::Conditionals(DiscreteKeys{mode},
conditionals));
VectorValues vv;
vv.insert(Z(0), Z_3x1);
@ -672,17 +684,15 @@ TEST(HybridEstimation, ModeSelection2) {
graph.emplace_shared<PriorFactor<Vector3>>(X(0), Z_3x1, measurement_model);
graph.emplace_shared<PriorFactor<Vector3>>(X(1), Z_3x1, measurement_model);
DiscreteKeys modes;
modes.emplace_back(M(0), 2);
auto model0 = std::make_shared<BetweenFactor<Vector3>>(
X(0), X(1), Z_3x1, noiseModel::Isotropic::Sigma(d, noise_loose)),
model1 = std::make_shared<BetweenFactor<Vector3>>(
X(0), X(1), Z_3x1, noiseModel::Isotropic::Sigma(d, noise_tight));
std::vector<NonlinearFactor::shared_ptr> components = {model0, model1};
std::vector<NonlinearFactorValuePair> components = {{model0, 0.0},
{model1, 0.0}};
KeyVector keys = {X(0), X(1)};
DiscreteKey modes(M(0), 2);
HybridNonlinearFactor mf(keys, modes, components);
initial.insert<Vector3>(X(0), Z_3x1);

View File

@ -52,9 +52,9 @@ TEST(HybridFactorGraph, Keys) {
// Add a gaussian mixture factor ϕ(x1, c1)
DiscreteKey m1(M(1), 2);
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
M(1), std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
DecisionTree<Key, GaussianFactorValuePair> dt(
M(1), {std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1), 0.0},
{std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()), 0.0});
hfg.add(HybridGaussianFactor({X(1)}, {m1}, dt));
KeySet expected_continuous{X(0), X(1)};

View File

@ -52,7 +52,9 @@ const std::vector<GaussianConditional::shared_ptr> conditionals{
commonSigma),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
commonSigma)};
const HybridGaussianConditional mixture({Z(0)}, {X(0)}, {mode}, conditionals);
const HybridGaussianConditional mixture(
{Z(0)}, {X(0)}, {mode},
HybridGaussianConditional::Conditionals({mode}, conditionals));
} // namespace equal_constants
/* ************************************************************************* */
@ -153,7 +155,9 @@ const std::vector<GaussianConditional::shared_ptr> conditionals{
0.5),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
3.0)};
const HybridGaussianConditional mixture({Z(0)}, {X(0)}, {mode}, conditionals);
const HybridGaussianConditional mixture(
{Z(0)}, {X(0)}, {mode},
HybridGaussianConditional::Conditionals({mode}, conditionals));
} // namespace mode_dependent_constants
/* ************************************************************************* */

View File

@ -71,8 +71,9 @@ TEST(HybridGaussianFactor, Sum) {
auto f20 = std::make_shared<JacobianFactor>(X(1), A1, X(3), A3, b);
auto f21 = std::make_shared<JacobianFactor>(X(1), A1, X(3), A3, b);
auto f22 = std::make_shared<JacobianFactor>(X(1), A1, X(3), A3, b);
std::vector<GaussianFactor::shared_ptr> factorsA{f10, f11};
std::vector<GaussianFactor::shared_ptr> factorsB{f20, f21, f22};
std::vector<GaussianFactorValuePair> factorsA{{f10, 0.0}, {f11, 0.0}};
std::vector<GaussianFactorValuePair> factorsB{
{f20, 0.0}, {f21, 0.0}, {f22, 0.0}};
// TODO(Frank): why specify keys at all? And: keys in factor should be *all*
// keys, deviating from Kevin's scheme. Should we index DT on DiscreteKey?
@ -109,7 +110,7 @@ TEST(HybridGaussianFactor, Printing) {
auto b = Matrix::Zero(2, 1);
auto f10 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
auto f11 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
std::vector<GaussianFactor::shared_ptr> factors{f10, f11};
std::vector<GaussianFactorValuePair> factors{{f10, 0.0}, {f11, 0.0}};
HybridGaussianFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
@ -178,7 +179,7 @@ TEST(HybridGaussianFactor, Error) {
auto f0 = std::make_shared<JacobianFactor>(X(1), A01, X(2), A02, b);
auto f1 = std::make_shared<JacobianFactor>(X(1), A11, X(2), A12, b);
std::vector<GaussianFactor::shared_ptr> factors{f0, f1};
std::vector<GaussianFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
HybridGaussianFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
@ -232,8 +233,11 @@ static HybridBayesNet GetGaussianMixtureModel(double mu0, double mu1,
c1 = make_shared<GaussianConditional>(z, Vector1(mu1), I_1x1, model1);
HybridBayesNet hbn;
DiscreteKeys discreteParents{m};
hbn.emplace_shared<HybridGaussianConditional>(
KeyVector{z}, KeyVector{}, DiscreteKeys{m}, std::vector{c0, c1});
KeyVector{z}, KeyVector{}, discreteParents,
HybridGaussianConditional::Conditionals(discreteParents,
std::vector{c0, c1}));
auto mixing = make_shared<DiscreteConditional>(m, "50/50");
hbn.push_back(mixing);
@ -407,8 +411,11 @@ static HybridGaussianConditional::shared_ptr CreateHybridMotionModel(
-I_1x1, model0),
c1 = make_shared<GaussianConditional>(X(1), Vector1(mu1), I_1x1, X(0),
-I_1x1, model1);
DiscreteKeys discreteParents{m1};
return std::make_shared<HybridGaussianConditional>(
KeyVector{X(1)}, KeyVector{X(0)}, DiscreteKeys{m1}, std::vector{c0, c1});
KeyVector{X(1)}, KeyVector{X(0)}, discreteParents,
HybridGaussianConditional::Conditionals(discreteParents,
std::vector{c0, c1}));
}
/// Create two state Bayes network with 1 or two measurement models
@ -523,7 +530,7 @@ TEST(HybridGaussianFactor, TwoStateModel) {
/**
* Test a model P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).
*
* P(f01|x1,x0,m1) has different means and different covariances.
* P(x1|x0,m1) has different means and different covariances.
*
* Converting to a factor graph gives us
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)
@ -613,13 +620,107 @@ TEST(HybridGaussianFactor, TwoStateModel2) {
}
}
/* ************************************************************************* */
/**
* Test a model p(z0|x0)p(x1|x0,m1)p(z1|x1)p(m1).
*
* p(x1|x0,m1) has the same means but different covariances.
*
* Converting to a factor graph gives us
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)p(m1)
*
* If we only have a measurement on z0, then
* the p(m1) should be 0.5/0.5.
* Getting a measurement on z1 gives use more information.
*/
TEST(HybridGaussianFactor, TwoStateModel3) {
using namespace test_two_state_estimation;
double mu = 1.0;
double sigma0 = 0.5, sigma1 = 2.0;
auto hybridMotionModel = CreateHybridMotionModel(mu, mu, sigma0, sigma1);
// Start with no measurement on x1, only on x0
const Vector1 z0(0.5);
VectorValues given;
given.insert(Z(0), z0);
{
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
// Check that ratio of Bayes net and factor graph for different modes is
// equal for several values of {x0,x1}.
for (VectorValues vv :
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
vv.insert(given); // add measurements for HBN
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
gfg.error(hv1) / hbn.error(hv1), 1e-9);
}
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Importance sampling run with 100k samples gives 50.095/49.905
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
// Since no measurement on x1, we a 50/50 probability
auto p_m = bn->at(2)->asDiscrete();
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 0}}), 1e-9);
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 1}}), 1e-9);
}
{
// Now we add a measurement z1 on x1
const Vector1 z1(4.0); // favors m==1
given.insert(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
// Check that ratio of Bayes net and factor graph for different modes is
// equal for several values of {x0,x1}.
for (VectorValues vv :
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
vv.insert(given); // add measurements for HBN
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
gfg.error(hv1) / hbn.error(hv1), 1e-9);
}
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "51.7762/48.2238");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
}
{
// Add a different measurement z1 on x1 that favors m==1
const Vector1 z1(7.0);
given.insert_or_assign(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "49.0762/50.9238");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.005));
}
}
/* ************************************************************************* */
/**
* Same model, P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1), but now with very informative
* measurements and vastly different motion model: either stand still or move
* far. This yields a very informative posterior.
*/
TEST(HybridGaussianFactor, TwoStateModel3) {
TEST(HybridGaussianFactor, TwoStateModel4) {
using namespace test_two_state_estimation;
double mu0 = 0.0, mu1 = 10.0;

View File

@ -127,9 +127,9 @@ TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
// Add a gaussian mixture factor ϕ(x1, c1)
DiscreteKey m1(M(1), 2);
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
M(1), std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
DecisionTree<Key, GaussianFactorValuePair> dt(
M(1), {std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1), 0.0},
{std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()), 0.0});
hfg.add(HybridGaussianFactor({X(1)}, {m1}, dt));
auto result = hfg.eliminateSequential();
@ -153,9 +153,9 @@ TEST(HybridGaussianFactorGraph, eliminateFullSequentialSimple) {
// Add factor between x0 and x1
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
std::vector<GaussianFactor::shared_ptr> factors = {
std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())};
std::vector<GaussianFactorValuePair> factors = {
{std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1), 0.0},
{std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()), 0.0}};
hfg.add(HybridGaussianFactor({X(1)}, {m1}, factors));
// Discrete probability table for c1
@ -178,10 +178,10 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
hfg.add(HybridGaussianFactor(
{X(1)}, {{M(1), 2}},
{std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
std::vector<GaussianFactorValuePair> factors = {
{std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1), 0.0},
{std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()), 0.0}};
hfg.add(HybridGaussianFactor({X(1)}, {M(1), 2}, factors));
hfg.add(DecisionTreeFactor(m1, {2, 8}));
// TODO(Varun) Adding extra discrete variable not connected to continuous
@ -208,9 +208,9 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalCLG) {
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
// Decision tree with different modes on x1
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
M(1), std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
DecisionTree<Key, GaussianFactorValuePair> dt(
M(1), {std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1), 0.0},
{std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()), 0.0});
// Hybrid factor P(x1|c1)
hfg.add(HybridGaussianFactor({X(1)}, {m}, dt));
@ -238,14 +238,14 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
hfg.add(JacobianFactor(X(1), I_3x3, X(2), -I_3x3, Z_3x1));
{
hfg.add(HybridGaussianFactor(
{X(0)}, {{M(0), 2}},
{std::make_shared<JacobianFactor>(X(0), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(0), I_3x3, Vector3::Ones())}));
std::vector<GaussianFactorValuePair> factors = {
{std::make_shared<JacobianFactor>(X(0), I_3x3, Z_3x1), 0.0},
{std::make_shared<JacobianFactor>(X(0), I_3x3, Vector3::Ones()), 0.0}};
hfg.add(HybridGaussianFactor({X(0)}, {M(0), 2}, factors));
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
M(1), std::make_shared<JacobianFactor>(X(2), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(2), I_3x3, Vector3::Ones()));
DecisionTree<Key, GaussianFactorValuePair> dt1(
M(1), {std::make_shared<JacobianFactor>(X(2), I_3x3, Z_3x1), 0.0},
{std::make_shared<JacobianFactor>(X(2), I_3x3, Vector3::Ones()), 0.0});
hfg.add(HybridGaussianFactor({X(2)}, {{M(1), 2}}, dt1));
}
@ -256,15 +256,15 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
hfg.add(JacobianFactor(X(4), I_3x3, X(5), -I_3x3, Z_3x1));
{
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
M(3), std::make_shared<JacobianFactor>(X(3), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(3), I_3x3, Vector3::Ones()));
DecisionTree<Key, GaussianFactorValuePair> dt(
M(3), {std::make_shared<JacobianFactor>(X(3), I_3x3, Z_3x1), 0.0},
{std::make_shared<JacobianFactor>(X(3), I_3x3, Vector3::Ones()), 0.0});
hfg.add(HybridGaussianFactor({X(3)}, {{M(3), 2}}, dt));
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
M(2), std::make_shared<JacobianFactor>(X(5), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(5), I_3x3, Vector3::Ones()));
DecisionTree<Key, GaussianFactorValuePair> dt1(
M(2), {std::make_shared<JacobianFactor>(X(5), I_3x3, Z_3x1), 0.0},
{std::make_shared<JacobianFactor>(X(5), I_3x3, Vector3::Ones()), 0.0});
hfg.add(HybridGaussianFactor({X(5)}, {{M(2), 2}}, dt1));
}
@ -552,9 +552,9 @@ TEST(HybridGaussianFactorGraph, optimize) {
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
C(1), std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
DecisionTree<Key, GaussianFactorValuePair> dt(
C(1), {std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1), 0.0},
{std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()), 0.0});
hfg.add(HybridGaussianFactor({X(1)}, {c1}, dt));
@ -682,8 +682,11 @@ TEST(HybridGaussianFactorGraph, ErrorTreeWithConditional) {
x0, -I_1x1, model0),
c1 = make_shared<GaussianConditional>(f01, Vector1(mu), I_1x1, x1, I_1x1,
x0, -I_1x1, model1);
DiscreteKeys discreteParents{m1};
hbn.emplace_shared<HybridGaussianConditional>(
KeyVector{f01}, KeyVector{x0, x1}, DiscreteKeys{m1}, std::vector{c0, c1});
KeyVector{f01}, KeyVector{x0, x1}, discreteParents,
HybridGaussianConditional::Conditionals(discreteParents,
std::vector{c0, c1}));
// Discrete uniform prior.
hbn.emplace_shared<DiscreteConditional>(m1, "0.5/0.5");
@ -806,9 +809,11 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1) {
X(0), Vector1(14.1421), I_1x1 * 2.82843),
conditional1 = std::make_shared<GaussianConditional>(
X(0), Vector1(10.1379), I_1x1 * 2.02759);
DiscreteKeys discreteParents{mode};
expectedBayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
std::vector{conditional0, conditional1});
KeyVector{X(0)}, KeyVector{}, discreteParents,
HybridGaussianConditional::Conditionals(
discreteParents, std::vector{conditional0, conditional1}));
// Add prior on mode.
expectedBayesNet.emplace_shared<DiscreteConditional>(mode, "74/26");
@ -831,12 +836,13 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) {
HybridBayesNet bn;
// Create Gaussian mixture z_0 = x0 + noise for each measurement.
std::vector<GaussianConditional::shared_ptr> conditionals{
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1, 3),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1, 0.5)};
auto gm = std::make_shared<HybridGaussianConditional>(
KeyVector{Z(0)}, KeyVector{X(0)}, DiscreteKeys{mode},
std::vector{
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1, 3),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1,
0.5)});
HybridGaussianConditional::Conditionals(DiscreteKeys{mode},
conditionals));
bn.push_back(gm);
// Create prior on X(0).
@ -865,7 +871,8 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) {
X(0), Vector1(14.1421), I_1x1 * 2.82843);
expectedBayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
std::vector{conditional0, conditional1});
HybridGaussianConditional::Conditionals(
DiscreteKeys{mode}, std::vector{conditional0, conditional1}));
// Add prior on mode.
expectedBayesNet.emplace_shared<DiscreteConditional>(mode, "1/1");
@ -902,7 +909,8 @@ TEST(HybridGaussianFactorGraph, EliminateTiny2) {
X(0), Vector1(10.274), I_1x1 * 2.0548);
expectedBayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
std::vector{conditional0, conditional1});
HybridGaussianConditional::Conditionals(
DiscreteKeys{mode}, std::vector{conditional0, conditional1}));
// Add prior on mode.
expectedBayesNet.emplace_shared<DiscreteConditional>(mode, "23/77");
@ -947,12 +955,14 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
for (size_t t : {0, 1, 2}) {
// Create Gaussian mixture on Z(t) conditioned on X(t) and mode N(t):
const auto noise_mode_t = DiscreteKey{N(t), 2};
std::vector<GaussianConditional::shared_ptr> conditionals{
GaussianConditional::sharedMeanAndStddev(Z(t), I_1x1, X(t), Z_1x1, 0.5),
GaussianConditional::sharedMeanAndStddev(Z(t), I_1x1, X(t), Z_1x1,
3.0)};
bn.emplace_shared<HybridGaussianConditional>(
KeyVector{Z(t)}, KeyVector{X(t)}, DiscreteKeys{noise_mode_t},
std::vector{GaussianConditional::sharedMeanAndStddev(Z(t), I_1x1, X(t),
Z_1x1, 0.5),
GaussianConditional::sharedMeanAndStddev(Z(t), I_1x1, X(t),
Z_1x1, 3.0)});
HybridGaussianConditional::Conditionals(DiscreteKeys{noise_mode_t},
conditionals));
// Create prior on discrete mode N(t):
bn.emplace_shared<DiscreteConditional>(noise_mode_t, "20/80");
@ -962,12 +972,15 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
for (size_t t : {2, 1}) {
// Create Gaussian mixture on X(t) conditioned on X(t-1) and mode M(t-1):
const auto motion_model_t = DiscreteKey{M(t), 2};
std::vector<GaussianConditional::shared_ptr> conditionals{
GaussianConditional::sharedMeanAndStddev(X(t), I_1x1, X(t - 1), Z_1x1,
0.2),
GaussianConditional::sharedMeanAndStddev(X(t), I_1x1, X(t - 1), I_1x1,
0.2)};
auto gm = std::make_shared<HybridGaussianConditional>(
KeyVector{X(t)}, KeyVector{X(t - 1)}, DiscreteKeys{motion_model_t},
std::vector{GaussianConditional::sharedMeanAndStddev(
X(t), I_1x1, X(t - 1), Z_1x1, 0.2),
GaussianConditional::sharedMeanAndStddev(
X(t), I_1x1, X(t - 1), I_1x1, 0.2)});
HybridGaussianConditional::Conditionals(DiscreteKeys{motion_model_t},
conditionals));
bn.push_back(gm);
// Create prior on motion model M(t):

View File

@ -420,9 +420,10 @@ TEST(HybridGaussianISAM, NonTrivial) {
noise_model),
moving = std::make_shared<PlanarMotionModel>(W(0), W(1), odometry,
noise_model);
std::vector<PlanarMotionModel::shared_ptr> components = {moving, still};
std::vector<std::pair<PlanarMotionModel::shared_ptr, double>> components = {
{moving, 0.0}, {still, 0.0}};
auto mixtureFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
contKeys, gtsam::DiscreteKey(M(1), 2), components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
@ -460,9 +461,9 @@ TEST(HybridGaussianISAM, NonTrivial) {
noise_model);
moving =
std::make_shared<PlanarMotionModel>(W(1), W(2), odometry, noise_model);
components = {moving, still};
components = {{moving, 0.0}, {still, 0.0}};
mixtureFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(2), 2)}, components);
contKeys, gtsam::DiscreteKey(M(2), 2), components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
@ -503,9 +504,9 @@ TEST(HybridGaussianISAM, NonTrivial) {
noise_model);
moving =
std::make_shared<PlanarMotionModel>(W(2), W(3), odometry, noise_model);
components = {moving, still};
components = {{moving, 0.0}, {still, 0.0}};
mixtureFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(3), 2)}, components);
contKeys, gtsam::DiscreteKey(M(3), 2), components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor

View File

@ -58,7 +58,7 @@ TEST(HybridNonlinearFactor, Printing) {
std::make_shared<BetweenFactor<double>>(X(1), X(2), between0, model);
auto f1 =
std::make_shared<BetweenFactor<double>>(X(1), X(2), between1, model);
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
HybridNonlinearFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
@ -86,7 +86,7 @@ static HybridNonlinearFactor getHybridNonlinearFactor() {
std::make_shared<BetweenFactor<double>>(X(1), X(2), between0, model);
auto f1 =
std::make_shared<BetweenFactor<double>>(X(1), X(2), between1, model);
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
return HybridNonlinearFactor({X(1), X(2)}, {m1}, factors);
}

View File

@ -27,6 +27,7 @@
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/sam/BearingRangeFactor.h>
@ -131,9 +132,10 @@ TEST(HybridGaussianFactorGraph, Resize) {
auto still = std::make_shared<MotionModel>(X(0), X(1), 0.0, noise_model),
moving = std::make_shared<MotionModel>(X(0), X(1), 1.0, noise_model);
std::vector<MotionModel::shared_ptr> components = {still, moving};
std::vector<std::pair<MotionModel::shared_ptr, double>> components = {
{still, 0.0}, {moving, 0.0}};
auto dcFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
contKeys, gtsam::DiscreteKey(M(1), 2), components);
nhfg.push_back(dcFactor);
Values linearizationPoint;
@ -162,17 +164,18 @@ TEST(HybridGaussianFactorGraph, HybridNonlinearFactor) {
auto still = std::make_shared<MotionModel>(X(0), X(1), 0.0, noise_model),
moving = std::make_shared<MotionModel>(X(0), X(1), 1.0, noise_model);
std::vector<MotionModel::shared_ptr> components = {still, moving};
std::vector<std::pair<MotionModel::shared_ptr, double>> components = {
{still, 0.0}, {moving, 0.0}};
// Check for exception when number of continuous keys are under-specified.
KeyVector contKeys = {X(0)};
THROWS_EXCEPTION(std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components));
contKeys, gtsam::DiscreteKey(M(1), 2), components));
// Check for exception when number of continuous keys are too many.
contKeys = {X(0), X(1), X(2)};
THROWS_EXCEPTION(std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components));
contKeys, gtsam::DiscreteKey(M(1), 2), components));
}
/*****************************************************************************
@ -440,7 +443,7 @@ TEST(HybridFactorGraph, Full_Elimination) {
DiscreteFactorGraph discrete_fg;
// TODO(Varun) Make this a function of HybridGaussianFactorGraph?
for (auto& factor : (*remainingFactorGraph_partial)) {
for (auto &factor : (*remainingFactorGraph_partial)) {
auto df = dynamic_pointer_cast<DiscreteFactor>(factor);
assert(df);
discrete_fg.push_back(df);
@ -801,9 +804,10 @@ TEST(HybridFactorGraph, DefaultDecisionTree) {
noise_model),
moving = std::make_shared<PlanarMotionModel>(X(0), X(1), odometry,
noise_model);
std::vector<PlanarMotionModel::shared_ptr> motion_models = {still, moving};
std::vector<std::pair<PlanarMotionModel::shared_ptr, double>> motion_models =
{{still, 0.0}, {moving, 0.0}};
fg.emplace_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, motion_models);
contKeys, gtsam::DiscreteKey(M(1), 2), motion_models);
// Add Range-Bearing measurements to from X0 to L0 and X1 to L1.
// create a noise model for the landmark measurements
@ -838,9 +842,174 @@ TEST(HybridFactorGraph, DefaultDecisionTree) {
EXPECT_LONGS_EQUAL(1, remainingFactorGraph->size());
}
namespace test_relinearization {
/**
* @brief Create a Factor Graph by directly specifying all
* the factors instead of creating conditionals first.
* This way we can directly provide the likelihoods and
* then perform (re-)linearization.
*
* @param means The means of the GaussianMixtureFactor components.
* @param sigmas The covariances of the GaussianMixtureFactor components.
* @param m1 The discrete key.
* @param x0_measurement A measurement on X0
* @return HybridGaussianFactorGraph
*/
static HybridNonlinearFactorGraph CreateFactorGraph(
const std::vector<double> &means, const std::vector<double> &sigmas,
DiscreteKey &m1, double x0_measurement) {
auto model0 = noiseModel::Isotropic::Sigma(1, sigmas[0]);
auto model1 = noiseModel::Isotropic::Sigma(1, sigmas[1]);
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
auto f0 =
std::make_shared<BetweenFactor<double>>(X(0), X(1), means[0], model0);
auto f1 =
std::make_shared<BetweenFactor<double>>(X(0), X(1), means[1], model1);
// Create HybridNonlinearFactor
std::vector<NonlinearFactorValuePair> factors{
{f0, ComputeLogNormalizer(model0)}, {f1, ComputeLogNormalizer(model1)}};
HybridNonlinearFactor mixtureFactor({X(0), X(1)}, {m1}, factors);
HybridNonlinearFactorGraph hfg;
hfg.push_back(mixtureFactor);
hfg.push_back(PriorFactor<double>(X(0), x0_measurement, prior_noise));
return hfg;
}
} // namespace test_relinearization
/* ************************************************************************* */
/**
* @brief Test components with differing means but the same covariances.
* The factor graph is
* *-X1-*-X2
* |
* M1
*/
TEST(HybridNonlinearFactorGraph, DifferentMeans) {
using namespace test_relinearization;
DiscreteKey m1(M(1), 2);
Values values;
double x0 = 0.0, x1 = 1.75;
values.insert(X(0), x0);
values.insert(X(1), x1);
std::vector<double> means = {0.0, 2.0}, sigmas = {1e-0, 1e-0};
HybridNonlinearFactorGraph hfg = CreateFactorGraph(means, sigmas, m1, x0);
{
auto bn = hfg.linearize(values)->eliminateSequential();
HybridValues actual = bn->optimize();
HybridValues expected(
VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(-1.75)}},
DiscreteValues{{M(1), 0}});
EXPECT(assert_equal(expected, actual));
DiscreteValues dv0{{M(1), 0}};
VectorValues cont0 = bn->optimize(dv0);
double error0 = bn->error(HybridValues(cont0, dv0));
// TODO(Varun) Perform importance sampling to estimate error?
// regression
EXPECT_DOUBLES_EQUAL(0.69314718056, error0, 1e-9);
DiscreteValues dv1{{M(1), 1}};
VectorValues cont1 = bn->optimize(dv1);
double error1 = bn->error(HybridValues(cont1, dv1));
EXPECT_DOUBLES_EQUAL(error0, error1, 1e-9);
}
{
// Add measurement on x1
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
hfg.push_back(PriorFactor<double>(X(1), means[1], prior_noise));
auto bn = hfg.linearize(values)->eliminateSequential();
HybridValues actual = bn->optimize();
HybridValues expected(
VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(0.25)}},
DiscreteValues{{M(1), 1}});
EXPECT(assert_equal(expected, actual));
{
DiscreteValues dv{{M(1), 0}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(2.12692448787, error, 1e-9);
}
{
DiscreteValues dv{{M(1), 1}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(0.126928487854, error, 1e-9);
}
}
}
/* ************************************************************************* */
/**
* @brief Test components with differing covariances but the same means.
* The factor graph is
* *-X1-*-X2
* |
* M1
*/
TEST_DISABLED(HybridNonlinearFactorGraph, DifferentCovariances) {
using namespace test_relinearization;
DiscreteKey m1(M(1), 2);
Values values;
double x0 = 1.0, x1 = 1.0;
values.insert(X(0), x0);
values.insert(X(1), x1);
std::vector<double> means = {0.0, 0.0}, sigmas = {1e2, 1e-2};
// Create FG with HybridNonlinearFactor and prior on X1
HybridNonlinearFactorGraph hfg = CreateFactorGraph(means, sigmas, m1, x0);
// Linearize and eliminate
auto hbn = hfg.linearize(values)->eliminateSequential();
VectorValues cv;
cv.insert(X(0), Vector1(0.0));
cv.insert(X(1), Vector1(0.0));
// Check that the error values at the MLE point μ.
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
DiscreteValues dv0{{M(1), 0}};
DiscreteValues dv1{{M(1), 1}};
// regression
EXPECT_DOUBLES_EQUAL(9.90348755254, errorTree(dv0), 1e-9);
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
DiscreteConditional expected_m1(m1, "0.5/0.5");
DiscreteConditional actual_m1 = *(hbn->at(2)->asDiscrete());
EXPECT(assert_equal(expected_m1, actual_m1));
}
/* *************************************************************************
*/
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */
/* *************************************************************************
*/

View File

@ -439,9 +439,10 @@ TEST(HybridNonlinearISAM, NonTrivial) {
noise_model),
moving = std::make_shared<PlanarMotionModel>(W(0), W(1), odometry,
noise_model);
std::vector<PlanarMotionModel::shared_ptr> components = {moving, still};
std::vector<std::pair<PlanarMotionModel::shared_ptr, double>> components = {
{moving, 0.0}, {still, 0.0}};
auto mixtureFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
contKeys, gtsam::DiscreteKey(M(1), 2), components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
@ -479,9 +480,9 @@ TEST(HybridNonlinearISAM, NonTrivial) {
noise_model);
moving =
std::make_shared<PlanarMotionModel>(W(1), W(2), odometry, noise_model);
components = {moving, still};
components = {{moving, 0.0}, {still, 0.0}};
mixtureFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(2), 2)}, components);
contKeys, gtsam::DiscreteKey(M(2), 2), components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
@ -522,9 +523,9 @@ TEST(HybridNonlinearISAM, NonTrivial) {
noise_model);
moving =
std::make_shared<PlanarMotionModel>(W(2), W(3), odometry, noise_model);
components = {moving, still};
components = {{moving, 0.0}, {still, 0.0}};
mixtureFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(3), 2)}, components);
contKeys, gtsam::DiscreteKey(M(3), 2), components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor

View File

@ -76,16 +76,16 @@ BOOST_CLASS_EXPORT_GUID(HybridBayesNet, "gtsam_HybridBayesNet");
// Test HybridGaussianFactor serialization.
TEST(HybridSerialization, HybridGaussianFactor) {
KeyVector continuousKeys{X(0)};
DiscreteKeys discreteKeys{{M(0), 2}};
DiscreteKey discreteKey{M(0), 2};
auto A = Matrix::Zero(2, 1);
auto b0 = Matrix::Zero(2, 1);
auto b1 = Matrix::Ones(2, 1);
auto f0 = std::make_shared<JacobianFactor>(X(0), A, b0);
auto f1 = std::make_shared<JacobianFactor>(X(0), A, b1);
std::vector<GaussianFactor::shared_ptr> factors{f0, f1};
std::vector<GaussianFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
const HybridGaussianFactor factor(continuousKeys, discreteKeys, factors);
const HybridGaussianFactor factor(continuousKeys, discreteKey, factors);
EXPECT(equalsObj<HybridGaussianFactor>(factor));
EXPECT(equalsXML<HybridGaussianFactor>(factor));
@ -116,7 +116,8 @@ TEST(HybridSerialization, HybridGaussianConditional) {
const auto conditional1 = std::make_shared<GaussianConditional>(
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 3));
const HybridGaussianConditional gm({Z(0)}, {X(0)}, {mode},
{conditional0, conditional1});
HybridGaussianConditional::Conditionals(
{mode}, {conditional0, conditional1}));
EXPECT(equalsObj<HybridGaussianConditional>(gm));
EXPECT(equalsXML<HybridGaussianConditional>(gm));

View File

@ -707,6 +707,25 @@ const RobustModel::shared_ptr &robust, const NoiseModel::shared_ptr noise){
}
/* ************************************************************************* */
} // namespace noiseModel
/* *******************************************************************************/
double ComputeLogNormalizer(
const noiseModel::Gaussian::shared_ptr& noise_model) {
// Since noise models are Gaussian, we can get the logDeterminant using
// the same trick as in GaussianConditional
// Sigma = (R'R)^{-1}, det(Sigma) = det((R'R)^{-1}) = det(R'R)^{-1}
// log det(Sigma) = -log(det(R'R)) = -2*log(det(R))
// Hence, log det(Sigma)) = -2.0 * logDetR()
double logDetR = noise_model->R()
.diagonal()
.unaryExpr([](double x) { return log(x); })
.sum();
double logDeterminantSigma = -2.0 * logDetR;
size_t n = noise_model->dim();
constexpr double log2pi = 1.8378770664093454835606594728112;
return n * log2pi + logDeterminantSigma;
}
} // gtsam

View File

@ -751,6 +751,18 @@ namespace gtsam {
template<> struct traits<noiseModel::Isotropic> : public Testable<noiseModel::Isotropic> {};
template<> struct traits<noiseModel::Unit> : public Testable<noiseModel::Unit> {};
/**
* @brief Helper function to compute the log(|2πΣ|) normalizer values
* for a Gaussian noise model.
* We compute this in the log-space for numerical accuracy.
*
* @param noise_model The Gaussian noise model
* whose normalizer we wish to compute.
* @return double
*/
GTSAM_EXPORT double ComputeLogNormalizer(
const noiseModel::Gaussian::shared_ptr& noise_model);
} //\ namespace gtsam

View File

@ -807,6 +807,26 @@ TEST(NoiseModel, NonDiagonalGaussian)
}
}
TEST(NoiseModel, ComputeLogNormalizer) {
// Very simple 1D noise model, which we can compute by hand.
double sigma = 0.1;
auto noise_model = Isotropic::Sigma(1, sigma);
double actual_value = ComputeLogNormalizer(noise_model);
// Compute log(|2πΣ|) by hand.
// = log(2π) + log(Σ) (since it is 1D)
constexpr double log2pi = 1.8378770664093454835606594728112;
double expected_value = log2pi + log(sigma * sigma);
EXPECT_DOUBLES_EQUAL(expected_value, actual_value, 1e-9);
// Similar situation in the 3D case
size_t n = 3;
auto noise_model2 = Isotropic::Sigma(n, sigma);
double actual_value2 = ComputeLogNormalizer(noise_model2);
// We multiply by 3 due to the determinant
double expected_value2 = n * (log2pi + log(sigma * sigma));
EXPECT_DOUBLES_EQUAL(expected_value2, actual_value2, 1e-9);
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */

View File

@ -43,14 +43,12 @@ class TestHybridBayesNet(GtsamTestCase):
# Create the conditionals
conditional0 = GaussianConditional(X(1), [5], I_1x1, model0)
conditional1 = GaussianConditional(X(1), [2], I_1x1, model1)
discrete_keys = DiscreteKeys()
discrete_keys.push_back(Asia)
# Create hybrid Bayes net.
bayesNet = HybridBayesNet()
bayesNet.push_back(conditional)
bayesNet.push_back(
HybridGaussianConditional([X(1)], [], discrete_keys,
HybridGaussianConditional([X(1)], [], Asia,
[conditional0, conditional1]))
bayesNet.push_back(DiscreteConditional(Asia, "99/1"))

View File

@ -20,7 +20,7 @@ import gtsam
from gtsam import (DiscreteConditional, DiscreteKeys, GaussianConditional,
HybridBayesNet, HybridGaussianConditional,
HybridGaussianFactor, HybridGaussianFactorGraph,
HybridValues, JacobianFactor, Ordering, noiseModel)
HybridValues, JacobianFactor, noiseModel)
DEBUG_MARGINALS = False
@ -31,13 +31,11 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
def test_create(self):
"""Test construction of hybrid factor graph."""
model = noiseModel.Unit.Create(3)
dk = DiscreteKeys()
dk.push_back((C(0), 2))
jf1 = JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)), model)
jf2 = JacobianFactor(X(0), np.eye(3), np.ones((3, 1)), model)
gmf = HybridGaussianFactor([X(0)], dk, [jf1, jf2])
gmf = HybridGaussianFactor([X(0)], (C(0), 2), [(jf1, 0), (jf2, 0)])
hfg = HybridGaussianFactorGraph()
hfg.push_back(jf1)
@ -58,13 +56,11 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
def test_optimize(self):
"""Test construction of hybrid factor graph."""
model = noiseModel.Unit.Create(3)
dk = DiscreteKeys()
dk.push_back((C(0), 2))
jf1 = JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)), model)
jf2 = JacobianFactor(X(0), np.eye(3), np.ones((3, 1)), model)
gmf = HybridGaussianFactor([X(0)], dk, [jf1, jf2])
gmf = HybridGaussianFactor([X(0)], (C(0), 2), [(jf1, 0), (jf2, 0)])
hfg = HybridGaussianFactorGraph()
hfg.push_back(jf1)
@ -96,8 +92,6 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
# Create Gaussian mixture Z(0) = X(0) + noise for each measurement.
I_1x1 = np.eye(1)
keys = DiscreteKeys()
keys.push_back(mode)
for i in range(num_measurements):
conditional0 = GaussianConditional.FromMeanAndStddev(Z(i),
I_1x1,
@ -108,7 +102,7 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
X(0), [0],
sigma=3)
bayesNet.push_back(
HybridGaussianConditional([Z(i)], [X(0)], keys,
HybridGaussianConditional([Z(i)], [X(0)], mode,
[conditional0, conditional1]))
# Create prior on X(0).

View File

@ -27,21 +27,18 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
def test_nonlinear_hybrid(self):
nlfg = gtsam.HybridNonlinearFactorGraph()
dk = gtsam.DiscreteKeys()
dk.push_back((10, 2))
nlfg.push_back(
BetweenFactorPoint3(1, 2, Point3(1, 2, 3),
noiseModel.Diagonal.Variances([1, 1, 1])))
nlfg.push_back(
PriorFactorPoint3(2, Point3(1, 2, 3),
noiseModel.Diagonal.Variances([0.5, 0.5, 0.5])))
nlfg.push_back(
gtsam.HybridNonlinearFactor([1], dk, [
PriorFactorPoint3(1, Point3(0, 0, 0),
noiseModel.Unit.Create(3)),
PriorFactorPoint3(1, Point3(1, 2, 1),
noiseModel.Unit.Create(3))
]))
factors = [(PriorFactorPoint3(1, Point3(0, 0, 0),
noiseModel.Unit.Create(3)), 0.0),
(PriorFactorPoint3(1, Point3(1, 2, 1),
noiseModel.Unit.Create(3)), 0.0)]
nlfg.push_back(gtsam.HybridNonlinearFactor([1], (10, 2), factors))
nlfg.push_back(gtsam.DecisionTreeFactor((10, 2), "1 3"))
values = gtsam.Values()
values.insert_point3(1, Point3(0, 0, 0))