Fixed comment
parent
ab044b693b
commit
f71e156bce
|
@ -635,9 +635,9 @@ namespace gtsam {
|
|||
* To illustrate, let's consider the least-squares (L2), L1, and Huber estimators as examples:
|
||||
*
|
||||
* Name Symbol Least-Squares L1-norm Huber
|
||||
* Residual \rho(x) 0.5*x^2 |x| 0.5*x^2 if x<k, 0.5*k^2 + k|x-k| otherwise
|
||||
* Derivative \phi(x) x sgn(x) x if x<k, k sgn(x) otherwise
|
||||
* Weight w(x)=\phi(x)/x 1 1/|x| 1 if x<k, k/|x| otherwise
|
||||
* Residual \rho(x) 0.5*x^2 |x| 0.5*x^2 if |x|<k, 0.5*k^2 + k|x-k| otherwise
|
||||
* Derivative \phi(x) x sgn(x) x if |x|<k, k sgn(x) otherwise
|
||||
* Weight w(x)=\phi(x)/x 1 1/|x| 1 if |x|<k, k/|x| otherwise
|
||||
*
|
||||
* With these definitions, D(\rho(x), p) = \phi(x) D(x,p) = w(x) x D(x,p) = w(x) D(L2(x), p),
|
||||
* and hence we can solve the equivalent weighted least squares problem \sum w(r_i) \rho(r_i)
|
||||
|
|
Loading…
Reference in New Issue