Fixed up examples to be a bit less verbose and match up with the manual again.
parent
93f995065f
commit
f70af2ef38
|
@ -23,25 +23,16 @@
|
|||
* - We have "GPS-like" measurements implemented with a custom factor
|
||||
*/
|
||||
|
||||
// As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
|
||||
// the robot positions
|
||||
// We will use Pose2 variables (x, y, theta) to represent the robot positions
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
|
||||
// Each variable in the system (poses) must be identified with a unique key.
|
||||
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
|
||||
// Here we will use simple integer keys
|
||||
// We will use simple integer Keys to refer to the robot poses.
|
||||
#include <gtsam/nonlinear/Key.h>
|
||||
|
||||
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
|
||||
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
|
||||
// Here we will use Between factors for the relative motion described by odometry measurements.
|
||||
// Because we have global measurements in the form of "GPS-like" measurements, we don't
|
||||
// actually need to provide an initial position prior in this example. We will create our
|
||||
// custom factor shortly.
|
||||
// As in OdometryExample.cpp, we use a BetweenFactor to model odometry measurements.
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
|
||||
// are nonlinear factors, we will need a Nonlinear Factor Graph.
|
||||
// We add all facors to a Nonlinear Factor Graph, as our factors are nonlinear.
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
|
||||
|
@ -61,11 +52,9 @@
|
|||
// of desired variables
|
||||
#include <gtsam/nonlinear/Marginals.h>
|
||||
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
|
||||
// Before we begin the example, we must create a custom unary factor to implement a
|
||||
// "GPS-like" functionality. Because standard GPS measurements provide information
|
||||
// only on the position, and not on the orientation, we cannot use a simple prior to
|
||||
|
@ -75,10 +64,12 @@ using namespace gtsam;
|
|||
// also use a standard Gaussian noise model. Hence, we will derive our new factor from
|
||||
// the NoiseModelFactor1.
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
|
||||
class UnaryFactor: public NoiseModelFactor1<Pose2> {
|
||||
|
||||
// The factor will hold a measurement consisting of an (X,Y) location
|
||||
Point2 measurement_;
|
||||
// We could this with a Point2 but here we just use two doubles
|
||||
double mx_, my_;
|
||||
|
||||
public:
|
||||
/// shorthand for a smart pointer to a factor
|
||||
|
@ -86,15 +77,15 @@ public:
|
|||
|
||||
// The constructor requires the variable key, the (X, Y) measurement value, and the noise model
|
||||
UnaryFactor(Key j, double x, double y, const SharedNoiseModel& model):
|
||||
NoiseModelFactor1<Pose2>(model, j), measurement_(x, y) {}
|
||||
NoiseModelFactor1<Pose2>(model, j), mx_(x), my_(y) {}
|
||||
|
||||
virtual ~UnaryFactor() {}
|
||||
|
||||
// By using the NoiseModelFactor base classes, the only two function that must be overridden.
|
||||
// Using the NoiseModelFactor1 base class there are two functions that must be overridden.
|
||||
// The first is the 'evaluateError' function. This function implements the desired measurement
|
||||
// function, returning a vector of errors when evaluated at the provided variable value. It
|
||||
// must also calculate the Jacobians for this measurement function, if requested.
|
||||
Vector evaluateError(const Pose2& pose, boost::optional<Matrix&> H = boost::none) const
|
||||
Vector evaluateError(const Pose2& q, boost::optional<Matrix&> H = boost::none) const
|
||||
{
|
||||
// The measurement function for a GPS-like measurement is simple:
|
||||
// error_x = pose.x - measurement.x
|
||||
|
@ -102,10 +93,8 @@ public:
|
|||
// Consequently, the Jacobians are:
|
||||
// [ derror_x/dx derror_x/dy derror_x/dtheta ] = [1 0 0]
|
||||
// [ derror_y/dx derror_y/dy derror_y/dtheta ] = [0 1 0]
|
||||
if (H)
|
||||
(*H) = Matrix_(2,3, 1.0,0.0,0.0, 0.0,1.0,0.0);
|
||||
|
||||
return Vector_(2, pose.x() - measurement_.x(), pose.y() - measurement_.y());
|
||||
if (H) (*H) = Matrix_(2,3, 1.0,0.0,0.0, 0.0,1.0,0.0);
|
||||
return Vector_(2, q.x() - mx_, q.y() - my_);
|
||||
}
|
||||
|
||||
// The second is a 'clone' function that allows the factor to be copied. Under most
|
||||
|
@ -115,22 +104,11 @@ public:
|
|||
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
||||
gtsam::NonlinearFactor::shared_ptr(new UnaryFactor(*this))); }
|
||||
|
||||
// Additionally, custom factors should really provide specific implementations of
|
||||
// 'equals' to ensure proper operation will all GTSAM functionality, and a custom
|
||||
// 'print' function, if desired.
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
|
||||
const UnaryFactor* e = dynamic_cast<const UnaryFactor*> (&expected);
|
||||
return e != NULL && NoiseModelFactor1::equals(*e, tol) && this->measurement_.equals(e->measurement_, tol);
|
||||
}
|
||||
|
||||
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
std::cout << s << "UnaryFactor(" << keyFormatter(this->key()) << ")\n";
|
||||
measurement_.print(" measurement: ");
|
||||
this->noiseModel_->print(" noise model: ");
|
||||
}
|
||||
|
||||
};
|
||||
// Additionally, we encourage you the use of unit testing your custom factors,
|
||||
// (as all GTSAM factors are), in which you would need an equals and print, to satisfy the
|
||||
// GTSAM_CONCEPT_TESTABLE_INST(T) defined in Testable.h, but these are not needed below.
|
||||
|
||||
}; // UnaryFactor
|
||||
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
@ -148,8 +126,9 @@ int main(int argc, char** argv) {
|
|||
// 2b. Add "GPS-like" measurements
|
||||
// We will use our custom UnaryFactor for this.
|
||||
noiseModel::Diagonal::shared_ptr unaryNoise = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1)); // 10cm std on x,y
|
||||
graph.add(UnaryFactor(1, 0.0, 0.0, unaryNoise));
|
||||
graph.add(UnaryFactor(3, 4.0, 0.0, unaryNoise));
|
||||
graph.push_back(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
|
||||
graph.push_back(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
|
||||
graph.push_back(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));
|
||||
graph.print("\nFactor Graph:\n"); // print
|
||||
|
||||
// 3. Create the data structure to hold the initialEstimate estimate to the solution
|
||||
|
@ -172,9 +151,9 @@ int main(int argc, char** argv) {
|
|||
|
||||
// 5. Calculate and print marginal covariances for all variables
|
||||
Marginals marginals(graph, result);
|
||||
cout << "Pose 1 covariance:\n" << marginals.marginalCovariance(1) << endl;
|
||||
cout << "Pose 2 covariance:\n" << marginals.marginalCovariance(2) << endl;
|
||||
cout << "Pose 3 covariance:\n" << marginals.marginalCovariance(3) << endl;
|
||||
cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
|
||||
cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
|
||||
cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -22,10 +22,8 @@
|
|||
* - We have full odometry between poses
|
||||
*/
|
||||
|
||||
// As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
|
||||
// the robot positions
|
||||
// We will use Pose2 variables (x, y, theta) to represent the robot positions
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
|
||||
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
|
||||
|
|
Loading…
Reference in New Issue