Revert commits related with fixing PCG (reverted from commit 1f827fae43)

release/4.3a0
Sungtae An 2014-12-07 18:26:09 -05:00
parent 02131057ee
commit f6dd14126d
4 changed files with 7 additions and 229 deletions

View File

@ -33,7 +33,6 @@ void PCGSolverParameters::print(ostream &os) const {
/*****************************************************************************/
PCGSolver::PCGSolver(const PCGSolverParameters &p) {
parameters_ = p;
preconditioner_ = createPreconditioner(p.preconditioner_);
}

View File

@ -143,9 +143,11 @@ void BlockJacobiPreconditioner::build(
}
/* getting the block diagonals over the factors */
std::map<Key, Matrix> hessianMap =gfg.hessianBlockDiagonal();
BOOST_FOREACH ( const Matrix hessian, hessianMap | boost::adaptors::map_values)
blocks.push_back(hessian);
BOOST_FOREACH ( const GaussianFactor::shared_ptr &gf, gfg ) {
std::map<Key, Matrix> hessianMap = gf->hessianBlockDiagonal();
BOOST_FOREACH ( const Matrix hessian, hessianMap | boost::adaptors::map_values)
blocks.push_back(hessian);
}
/* if necessary, allocating the memory for cacheing the factorization results */
if ( nnz > bufferSize_ ) {

View File

@ -151,14 +151,6 @@ public:
const std::map<Key,Vector> &lambda
) ;
// Should be removed after test
double* getBuffer() {
return buffer_;
}
size_t getBufferSize() {
return bufferSize_;
}
protected:
void clean() ;

View File

@ -100,7 +100,7 @@ std::vector<Matrix> buildBlocks( const GaussianFactorGraph &gfg, const KeyInfo &
return blocks;
}
/* *************************************************************************
/* ************************************************************************* */
TEST( Preconditioner, buildBlocks ) {
// Create simple Gaussian factor graph and initial values
GaussianFactorGraph gfg = createSimpleGaussianFactorGraph();
@ -121,7 +121,7 @@ TEST( Preconditioner, buildBlocks ) {
EXPECT(assert_equal(it1->second, *it2));
}
/* *************************************************************************
/* ************************************************************************* */
TEST( Preconditioner, buildBlocks2 ) {
// Create simple Gaussian factor graph and initial values
GaussianFactorGraph gfg = createSimpleGaussianFactorGraphUnordered();
@ -143,221 +143,6 @@ TEST( Preconditioner, buildBlocks2 ) {
EXPECT(assert_equal(it1->second, *it2));
}
/* *************************************************************************
TEST( BlockJacobiPreconditioner, verySimpleLinerSystem) {
// Ax = [4 1][u] = [1] x0 = [2]
// [1 3][v] [2] [1]
//
// exact solution x = [1/11, 7/11]';
//
// Create a Gaussian Factor Graph
GaussianFactorGraph simpleGFG;
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 4, 1, 1, 3), (Vector(2) << 1,2 ), noiseModel::Unit::Create(2));
//simpleGFG.print("Factors\n");
// Expected Hessian block diagonal matrices
std::map<Key, Matrix> expectedHessian =simpleGFG.hessianBlockDiagonal();
// Actual Hessian block diagonal matrices from BlockJacobiPreconditioner::build
std::vector<Matrix> actualHessian = buildBlocks(simpleGFG, KeyInfo(simpleGFG));
// Compare the number of block diagonal matrices
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
// Compare the values of matrices
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
// the function 'build' in BlockJacobianPreconditioner stores in 'buffer'
// the cholesky decomposion of each block of the hessian (column major)
// In this example there is a single block (i.e., a single value)
// and the corresponding block of the Hessian is
//
// H0 = [17 7; 7 10]
//
Matrix expectedH0 = it1->second;
Matrix actualH0 = *it2;
EXPECT(assert_equal(expectedH0, (Matrix(2,2) << 17, 7, 7, 10) ));
EXPECT(assert_equal(expectedH0, actualH0));
// The corresponding Cholesky decomposition is:
// R = chol(H0) = [4.1231 1.6977 0 2.6679] (from Matlab)
Preconditioner::shared_ptr preconditioner = createPreconditioner(boost::make_shared<gtsam::BlockJacobiPreconditionerParameters>());
preconditioner->build(simpleGFG, KeyInfo(simpleGFG), std::map<Key,Vector>());
boost::shared_ptr<BlockJacobiPreconditioner> blockJacobi = boost::dynamic_pointer_cast<BlockJacobiPreconditioner>(preconditioner);
Vector expectedR = (Vector(4) << 4.1231, 0, 1.6977, 2.6679);
double* buf = blockJacobi->getBuffer();
for(int i=0; i<4; ++i){
EXPECT_DOUBLES_EQUAL(expectedR(i), buf[i], 1e-4);
}
}
/* ************************************************************************* */
TEST( BlockJacobiPreconditioner, SimpleLinerSystem) {
// Create a Gaussian Factor Graph
GaussianFactorGraph simpleGFG;
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 10, 0, 0, 10), (Vector(2) << -1, -1), unit2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -10, 0, 0, -10), 0, (Matrix(2,2)<< 10, 0, 0, 10), (Vector(2) << 2, -1), unit2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -5, 0, 0, -5), 1, (Matrix(2,2)<< 5, 0, 0, 5), (Vector(2) << 0, 1), unit2);
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< -5, 0, 0, -5), 1, (Matrix(2,2)<< 5, 0, 0, 5), (Vector(2) << -1, 1.5), unit2);
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
simpleGFG += JacobianFactor(1, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
// Expected Hessian block diagonal matrices
std::map<Key, Matrix> expectedHessian =simpleGFG.hessianBlockDiagonal();
// Actual Hessian block diagonal matrices from BlockJacobiPreconditioner::build
std::vector<Matrix> actualHessian = buildBlocks(simpleGFG, KeyInfo(simpleGFG));
// Compare the number of block diagonal matrices
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
// Compare the values of matrices
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
Preconditioner::shared_ptr preconditioner = createPreconditioner(boost::make_shared<gtsam::BlockJacobiPreconditionerParameters>());
preconditioner->build(simpleGFG, KeyInfo(simpleGFG), std::map<Key,Vector>());
boost::shared_ptr<BlockJacobiPreconditioner> blockJacobi = boost::dynamic_pointer_cast<BlockJacobiPreconditioner>(preconditioner);
double* buf = blockJacobi->getBuffer();
for(size_t i=0; i<blockJacobi->getBufferSize(); ++i){
std::cout << "buf[" << i << "] = " << buf[i] << std::endl;
}
}
/* ************************************************************************* */
TEST( PCGsolver, verySimpleLinearSystem) {
// Ax = [4 1][u] = [1] x0 = [2]
// [1 3][v] [2] [1]
//
// exact solution x = [1/11, 7/11]';
//
// Create a Gaussian Factor Graph
GaussianFactorGraph simpleGFG;
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 4, 1, 1, 3), (Vector(2) << 1,2 ), noiseModel::Unit::Create(2));
//simpleGFG.print("Factors\n");
// Exact solution already known
VectorValues exactSolution;
exactSolution.insert(0, (Vector(2) << 1./11., 7./11.));
//exactSolution.print("Exact");
// Solve the system using direct method
VectorValues deltaDirect = simpleGFG.optimize();
EXPECT(assert_equal(exactSolution, deltaDirect, 1e-7));
//deltaDirect.print("Direct");
// Solve the system using PCG
// With Dummy preconditioner
gtsam::PCGSolverParameters::shared_ptr pcg = boost::make_shared<gtsam::PCGSolverParameters>();
pcg->preconditioner_ = boost::make_shared<gtsam::DummyPreconditionerParameters>();
pcg->setMaxIterations(500);
pcg->setEpsilon_abs(0.0);
pcg->setEpsilon_rel(0.0);
//pcg->setVerbosity("ERROR");
VectorValues deltaPCGDummy = PCGSolver(*pcg).optimize(simpleGFG);
EXPECT(assert_equal(exactSolution, deltaPCGDummy, 1e-7));
// With Block-Jacobi preconditioner
gtsam::PCGSolverParameters::shared_ptr pcgJacobi = boost::make_shared<gtsam::PCGSolverParameters>();
pcgJacobi->preconditioner_ = boost::make_shared<gtsam::BlockJacobiPreconditionerParameters>();
pcgJacobi->setMaxIterations(500);
pcgJacobi->setEpsilon_abs(0.0);
pcgJacobi->setEpsilon_rel(0.0);
VectorValues deltaPCGJacobi = PCGSolver(*pcgJacobi).optimize(simpleGFG);
// Failed!
EXPECT(assert_equal(exactSolution, deltaPCGJacobi, 1e-5));
//deltaPCGJacobi.print("PCG Jacobi");
}
/* ************************************************************************* */
TEST(PCGSolver, simpleLinearSystem) {
// Create a Gaussian Factor Graph
GaussianFactorGraph simpleGFG;
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 10, 0, 0, 10), (Vector(2) << -1, -1), unit2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -10, 0, 0, -10), 0, (Matrix(2,2)<< 10, 0, 0, 10), (Vector(2) << 2, -1), unit2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -5, 0, 0, -5), 1, (Matrix(2,2)<< 5, 0, 0, 5), (Vector(2) << 0, 1), unit2);
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< -5, 0, 0, -5), 1, (Matrix(2,2)<< 5, 0, 0, 5), (Vector(2) << -1, 1.5), unit2);
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
simpleGFG += JacobianFactor(1, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
//simpleGFG.print("Factors\n");
// Expected solution
VectorValues expectedSolution;
expectedSolution.insert(0, (Vector(2) << 0.100498, -0.196756));
expectedSolution.insert(2, (Vector(2) << -0.0990413, -0.0980577));
expectedSolution.insert(1, (Vector(2) << -0.0973252, 0.100582));
// Solve the system using direct method
VectorValues deltaDirect = simpleGFG.optimize();
EXPECT(assert_equal(expectedSolution, deltaDirect, 1e-5));
//expectedSolution.print("Expected");
//deltaCholesky.print("Direct");
// Solve the system using PCG
VectorValues initial;
initial.insert(0, (Vector(2) << 0.1, -0.1));
initial.insert(1, (Vector(2) << -0.1, 0.1));
initial.insert(2, (Vector(2) << -0.1, -0.1));
// With Dummy preconditioner
gtsam::PCGSolverParameters::shared_ptr pcg = boost::make_shared<gtsam::PCGSolverParameters>();
pcg->preconditioner_ = boost::make_shared<gtsam::DummyPreconditionerParameters>();
pcg->setMaxIterations(500);
pcg->setEpsilon_abs(0.0);
pcg->setEpsilon_rel(0.0);
//pcg->setVerbosity("ERROR");
VectorValues deltaPCGDummy = PCGSolver(*pcg).optimize(simpleGFG, KeyInfo(simpleGFG), std::map<Key,Vector>(), initial);
// Failed!
EXPECT(assert_equal(expectedSolution, deltaPCGDummy, 1e-5));
//deltaPCGDummy.print("PCG Dummy");
// Solve the system using Preconditioned Conjugate Gradient
pcg->preconditioner_ = boost::make_shared<gtsam::BlockJacobiPreconditionerParameters>();
VectorValues deltaPCGJacobi = PCGSolver(*pcg).optimize(simpleGFG, KeyInfo(simpleGFG), std::map<Key,Vector>(), initial);
// Failed!
EXPECT(assert_equal(expectedSolution, deltaPCGJacobi, 1e-5));
//deltaPCGJacobi.print("PCG Jacobi");
// Test that the retrieval of the diagonal blocks of the Jacobian are correct.
std::map<Key, Matrix> expectedHessian =simpleGFG.hessianBlockDiagonal();
std::vector<Matrix> actualHessian = buildBlocks(simpleGFG, KeyInfo(simpleGFG));
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
// The corresponding Cholesky decomposition is:
// R = chol(H0) = [4.1231 1.6977 0 2.6679] (from Matlab)
Preconditioner::shared_ptr preconditioner = createPreconditioner(boost::make_shared<gtsam::BlockJacobiPreconditionerParameters>());
preconditioner->build(simpleGFG, KeyInfo(simpleGFG), std::map<Key,Vector>());
boost::shared_ptr<BlockJacobiPreconditioner> blockJacobi = boost::dynamic_pointer_cast<BlockJacobiPreconditioner>(preconditioner);
double* buf = blockJacobi->getBuffer();
for(int i=0; i<4; ++i){}
// TODO: EXPECT(assert_equal(number..,buf[i]));
size_t i = 0;
for(; it1!=expectedHessian.end(); it1++, it2++){
EXPECT(assert_equal(it1->second, *it2));
Matrix R_i(2,2);
R_i(0,0) = buf[i+0];
R_i(0,1) = buf[i+1];
R_i(1,0) = buf[i+2];
R_i(1,1) = buf[i+3];
Matrix actualH_i = R_i.transpose() * R_i;// i-th diagonal block
EXPECT(assert_equal(it1->second, actualH_i));
i += 4;
}
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */