fixes with Frank
parent
a14b88f607
commit
f6ad0a1920
|
@ -76,20 +76,20 @@ static const double PI = boost::math::constants::pi<double>();
|
|||
* for a node (without wrapping). The function starts at the nodes and moves towards the root
|
||||
* summing up the (directed) rotation measurements. The root is assumed to have orientation zero
|
||||
*/
|
||||
double computeThetaToRoot(const Key nodeKey, PredecessorMap<Key>& tree,
|
||||
map<Key, double>& deltaThetaMap, map<Key, double>& thetaFromRootMap) {
|
||||
double computeThetaToRoot(const Key nodeKey, const PredecessorMap<Key>& tree,
|
||||
const map<Key, double>& deltaThetaMap, map<Key, double>& thetaFromRootMap) {
|
||||
|
||||
double nodeTheta = 0;
|
||||
Key key_child = nodeKey; // the node
|
||||
Key key_parent = 0; // the initialization does not matter
|
||||
while(1){
|
||||
// We check if we reached the root
|
||||
if(tree[key_child]==key_child) // if we reached the root
|
||||
if(tree.at(key_child)==key_child) // if we reached the root
|
||||
break;
|
||||
// we sum the delta theta corresponding to the edge parent->child
|
||||
nodeTheta += deltaThetaMap[key_child];
|
||||
nodeTheta += deltaThetaMap.at(key_child);
|
||||
// we get the parent
|
||||
key_parent = tree[key_child]; // the parent
|
||||
key_parent = tree.at(key_child); // the parent
|
||||
// we check if we connected to some part of the tree we know
|
||||
if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
|
||||
nodeTheta += thetaFromRootMap[key_parent];
|
||||
|
@ -104,25 +104,29 @@ double computeThetaToRoot(const Key nodeKey, PredecessorMap<Key>& tree,
|
|||
* This function computes the cumulative orientation (without wrapping)
|
||||
* for all node wrt the root (root has zero orientation)
|
||||
*/
|
||||
map<Key, double> computeThetasToRoot(vector<Key>& keysInBinary, map<Key, double>& deltaThetaMap, PredecessorMap<Key>& tree){
|
||||
map<Key, double> computeThetasToRoot(const vector<Key>& keysInBinary,
|
||||
const map<Key, double>& deltaThetaMap, const PredecessorMap<Key>& tree) {
|
||||
|
||||
map<Key, double> thetaToRootMap;
|
||||
BOOST_FOREACH(const Key& nodeKey, keysInBinary){
|
||||
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap, thetaToRootMap);
|
||||
// for all nodes in the tree
|
||||
BOOST_FOREACH(const Key& nodeKey, keysInBinary) {
|
||||
// compute the orientation wrt root
|
||||
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
|
||||
thetaToRootMap);
|
||||
thetaToRootMap.insert(std::pair<Key, double>(nodeKey, nodeTheta));
|
||||
}
|
||||
return thetaToRootMap;
|
||||
}
|
||||
|
||||
/*
|
||||
* Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belong to the tree and to g,
|
||||
* Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belonging to the tree and to g,
|
||||
* and stores the factor slots corresponding to edges in the tree and to chords wrt this tree
|
||||
* Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree:
|
||||
* for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1]
|
||||
*/
|
||||
void getSymbolicSubgraph(vector<Key>& keysInBinary,
|
||||
/*OUTPUTS*/ vector<size_t>& spanningTree, vector<size_t>& chords, map<Key, double>& deltaThetaMap,
|
||||
/*INPUTS*/ PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
|
||||
/*INPUTS*/ const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
|
||||
|
||||
// Get keys for which you want the orientation
|
||||
size_t id=0;
|
||||
|
@ -147,11 +151,10 @@ void getSymbolicSubgraph(vector<Key>& keysInBinary,
|
|||
|
||||
// insert (directed) orientations in the map "deltaThetaMap"
|
||||
bool inTree=false;
|
||||
if(tree[key1]==key2){
|
||||
if(tree.at(key1)==key2){
|
||||
deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta));
|
||||
inTree = true;
|
||||
}
|
||||
if(tree[key2]==key1){
|
||||
} else if(tree.at(key2)==key1){
|
||||
deltaThetaMap.insert(std::pair<Key, double>(key2, deltaTheta));
|
||||
inTree = true;
|
||||
}
|
||||
|
@ -166,19 +169,25 @@ void getSymbolicSubgraph(vector<Key>& keysInBinary,
|
|||
}
|
||||
}
|
||||
|
||||
// Retrieves the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2>
|
||||
void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
|
||||
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta){
|
||||
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
|
||||
std::cout << "TODO: improve computation of noise model" << std::endl;
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
|
||||
if (!pose2Between) throw std::invalid_argument("buildOrientationGraph: invalid between factor!");
|
||||
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
|
||||
if (!pose2Between)
|
||||
throw std::invalid_argument(
|
||||
"buildOrientationGraph: invalid between factor!");
|
||||
deltaTheta = (Vector(1) << pose2Between->measured().theta());
|
||||
// Retrieve noise model
|
||||
SharedNoiseModel model = pose2Between->get_noiseModel();
|
||||
boost::shared_ptr< noiseModel::Gaussian > gaussianModel = boost::dynamic_pointer_cast< noiseModel::Gaussian >(model);
|
||||
if (!gaussianModel) throw std::invalid_argument("buildOrientationGraph: invalid noise model!");
|
||||
boost::shared_ptr<noiseModel::Gaussian> gaussianModel =
|
||||
boost::dynamic_pointer_cast<noiseModel::Gaussian>(model);
|
||||
if (!gaussianModel)
|
||||
throw std::invalid_argument("buildOrientationGraph: invalid noise model!");
|
||||
Matrix infoMatrix = gaussianModel->R() * gaussianModel->R(); // information matrix
|
||||
Matrix covMatrix = infoMatrix.inverse();
|
||||
Vector variance_deltaTheta = (Vector(1) << covMatrix(2,2));
|
||||
Vector variance_deltaTheta = (Vector(1) << covMatrix(2, 2));
|
||||
model_deltaTheta = noiseModel::Diagonal::Variances(variance_deltaTheta);
|
||||
}
|
||||
|
||||
|
@ -186,28 +195,27 @@ void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
|
|||
* Linear factor graph with regularized orientation measurements
|
||||
*/
|
||||
GaussianFactorGraph buildOrientationGraph(const vector<size_t>& spanningTree, const vector<size_t>& chords,
|
||||
const NonlinearFactorGraph& g, map<Key, double> orientationsToRoot, PredecessorMap<Key>& tree){
|
||||
const NonlinearFactorGraph& g, const map<Key, double>& orientationsToRoot, const PredecessorMap<Key>& tree){
|
||||
|
||||
GaussianFactorGraph lagoGraph;
|
||||
Vector deltaTheta;
|
||||
noiseModel::Diagonal::shared_ptr model_deltaTheta;
|
||||
Key key1, key2;
|
||||
|
||||
Matrix I = eye(1);
|
||||
// put original measurements in the spanning tree
|
||||
BOOST_FOREACH(const size_t& factorId, spanningTree){
|
||||
key1 = g[factorId]->keys()[0];
|
||||
key2 = g[factorId]->keys()[1];
|
||||
const FastVector<Key>& keys = g[factorId]->keys();
|
||||
Key key1 = keys[0], key2 = keys[1];
|
||||
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
|
||||
}
|
||||
// put regularized measurements in the chords
|
||||
BOOST_FOREACH(const size_t& factorId, chords){
|
||||
key1 = g[factorId]->keys()[0];
|
||||
key2 = g[factorId]->keys()[1];
|
||||
const FastVector<Key>& keys = g[factorId]->keys();
|
||||
Key key1 = keys[0], key2 = keys[1];
|
||||
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
||||
double key1_DeltaTheta_key2 = deltaTheta(0);
|
||||
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot[key1] - orientationsToRoot[key2]; // this coincides to summing up measurements along the cycle induced by the chord
|
||||
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1) - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
|
||||
double k = round(k2pi_noise/(2*PI));
|
||||
Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*PI);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
|
||||
|
@ -215,14 +223,7 @@ GaussianFactorGraph buildOrientationGraph(const vector<size_t>& spanningTree, co
|
|||
// prior on first orientation (anchor), corresponding to the root of the tree
|
||||
noiseModel::Diagonal::shared_ptr model_anchor = noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
|
||||
// find the root
|
||||
Key key_root = key1; // one random node
|
||||
while(1){
|
||||
// We check if we reached the root
|
||||
if(tree[key_root]==key_root) // if we reached the root
|
||||
break;
|
||||
key_root = tree[key_root]; // we move upwards in the tree
|
||||
}
|
||||
lagoGraph.add(JacobianFactor(key_root, I, (Vector(1) << 0.0), model_anchor));
|
||||
lagoGraph.add(JacobianFactor(tree.begin()->first, I, (Vector(1) << 0.0), model_anchor));
|
||||
return lagoGraph;
|
||||
}
|
||||
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
#ifdef __GNUC__
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wunused-variable"
|
||||
#pragma GCC diagnostic ignored "-Wunneeded-internal-declaration"
|
||||
//#pragma GCC diagnostic ignored "-Wunneeded-internal-declaration"
|
||||
#endif
|
||||
#include <boost/graph/breadth_first_search.hpp>
|
||||
#ifdef __GNUC__
|
||||
|
|
|
@ -108,8 +108,7 @@ TEST( Graph, composePoses )
|
|||
CHECK(assert_equal(expected, *actual));
|
||||
}
|
||||
|
||||
///* ************************************************************************* */
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, findMinimumSpanningTree )
|
||||
{
|
||||
GaussianFactorGraph g;
|
||||
|
@ -125,10 +124,21 @@ TEST( GaussianFactorGraph, findMinimumSpanningTree )
|
|||
g += JacobianFactor(X(3), I, X(4), I, b, model);
|
||||
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<GaussianFactorGraph, Key, JacobianFactor>(g);
|
||||
EXPECT_LONGS_EQUAL(tree[X(1)], X(1));
|
||||
EXPECT_LONGS_EQUAL(tree[X(2)], X(1));
|
||||
EXPECT_LONGS_EQUAL(tree[X(3)], X(1));
|
||||
EXPECT_LONGS_EQUAL(tree[X(4)], X(1));
|
||||
EXPECT_LONGS_EQUAL(X(1),tree[X(1)]);
|
||||
EXPECT_LONGS_EQUAL(X(1),tree[X(2)]);
|
||||
EXPECT_LONGS_EQUAL(X(1),tree[X(3)]);
|
||||
EXPECT_LONGS_EQUAL(X(1),tree[X(4)]);
|
||||
|
||||
// we add a disconnected component
|
||||
g += JacobianFactor(X(5), I, X(6), I, b, model);
|
||||
|
||||
PredecessorMap<Key> forest = findMinimumSpanningTree<GaussianFactorGraph, Key, JacobianFactor>(g);
|
||||
EXPECT_LONGS_EQUAL(X(1),forest[X(1)]);
|
||||
EXPECT_LONGS_EQUAL(X(1),forest[X(2)]);
|
||||
EXPECT_LONGS_EQUAL(X(1),forest[X(3)]);
|
||||
EXPECT_LONGS_EQUAL(X(1),forest[X(4)]);
|
||||
EXPECT_LONGS_EQUAL(X(5),forest[X(5)]);
|
||||
EXPECT_LONGS_EQUAL(X(5),forest[X(6)]);
|
||||
}
|
||||
|
||||
///* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue