first pass at IMUKittiExampleGPS.py
parent
158d279d59
commit
f6a432961a
|
@ -0,0 +1,227 @@
|
||||||
|
"""
|
||||||
|
Example of application of ISAM2 for GPS-aided navigation on the KITTI VISION BENCHMARK SUITE
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import gtsam
|
||||||
|
import numpy as np
|
||||||
|
from gtsam import Pose3, Rot3, noiseModel
|
||||||
|
from gtsam.symbol_shorthand import B, V, X
|
||||||
|
|
||||||
|
|
||||||
|
class KittiCalibration:
|
||||||
|
def __init__(self, bodyTimu: gtsam.Pose3):
|
||||||
|
self.bodyTimu = bodyTimu
|
||||||
|
|
||||||
|
|
||||||
|
class ImuMeasurement:
|
||||||
|
def __init__(self, time, dt, accelerometer, gyroscope):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class GpsMeasurement:
|
||||||
|
def __init__(self, time, position: gtsam.Point3):
|
||||||
|
self.time = time
|
||||||
|
self.position = position
|
||||||
|
|
||||||
|
|
||||||
|
def lodKittiData():
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def getImuParams(kitti_calibration):
|
||||||
|
GRAVITY = 9.8
|
||||||
|
w_coriolis = np.zeros(3)
|
||||||
|
|
||||||
|
# Set IMU preintegration parameters
|
||||||
|
measured_acc_cov = np.eye(3) * np.power(
|
||||||
|
kitti_calibration.accelerometer_sigma, 2)
|
||||||
|
measured_omega_cov = np.eye(3) * np.powwe(
|
||||||
|
kitti_calibration.gyroscope_sigma, 2)
|
||||||
|
# error committed in integrating position from velocities
|
||||||
|
integration_error_cov = np.eye(3) * np.power(
|
||||||
|
kitti_calibration.integration_sigma, 2)
|
||||||
|
|
||||||
|
imu_params = gtsam.PreintegrationParams.MakeSharedU(GRAVITY)
|
||||||
|
imu_params.accelerometerCovariance = measured_acc_cov # acc white noise in continuous
|
||||||
|
imu_params.integrationCovariance = integration_error_cov # integration uncertainty continuous
|
||||||
|
imu_params.gyroscopeCovariance = measured_omega_cov # gyro white noise in continuous
|
||||||
|
imu_params.omegaCoriolis = w_coriolis
|
||||||
|
|
||||||
|
return imu_params
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = parse_args()
|
||||||
|
kitti_calibration, imu_measurements, gps_measurements = lodKittiData()
|
||||||
|
|
||||||
|
if kitti_calibration.bodyTimu != gtsam.Pose3:
|
||||||
|
raise ValueError(
|
||||||
|
"Currently only support IMUinBody is identity, i.e. IMU and body frame are the same"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Configure different variables
|
||||||
|
first_gps_pose = 1
|
||||||
|
gps_skip = 10
|
||||||
|
|
||||||
|
# Configure noise models
|
||||||
|
noise_model_gps = noiseModel.Diagonal.Precisions(
|
||||||
|
np.asarray([0, 0, 0, 1.0 / 0.07, 1.0 / 0.07, 1.0 / 0.07]))
|
||||||
|
|
||||||
|
# Set initial conditions for the estimated trajectory
|
||||||
|
# initial pose is the reference frame (navigation frame)
|
||||||
|
current_pose_global = Pose3(Rot3(),
|
||||||
|
gps_measurements[first_gps_pose].position)
|
||||||
|
# the vehicle is stationary at the beginning at position 0,0,0
|
||||||
|
current_velocity_global = np.zeros(3)
|
||||||
|
current_bias = gtsam.imuBias.ConstantBias() # init with zero bias
|
||||||
|
|
||||||
|
sigma_init_x = noiseModel.Diagonal.Precisions(
|
||||||
|
np.asarray([0, 0, 0, 1, 1, 1]))
|
||||||
|
sigma_init_v = noiseModel.Diagonal.Sigmas(np.ones(3) * 1000.0)
|
||||||
|
sigma_init_b = noiseModel.Diagonal.Sigmas(
|
||||||
|
np.asarray([0.1, 0.1, 0.1, 5.00e-05, 5.00e-05, 5.00e-05]))
|
||||||
|
|
||||||
|
imu_params = getImuParams()
|
||||||
|
|
||||||
|
# Set ISAM2 parameters and create ISAM2 solver object
|
||||||
|
isam_params = gtsam.ISAM2Params()
|
||||||
|
isam_params.setFactorization("CHOLESKY")
|
||||||
|
isam_params.setRelinearizeSkip(10)
|
||||||
|
|
||||||
|
isam = gtsam.ISAM2(isam_params)
|
||||||
|
|
||||||
|
# Create the factor graph and values object that will store new factors and
|
||||||
|
# values to add to the incremental graph
|
||||||
|
new_factors = gtsam.NonlinearFactorGraph()
|
||||||
|
new_values = gtsam.Values(
|
||||||
|
) # values storing the initial estimates of new nodes in the factor graph
|
||||||
|
|
||||||
|
# Main loop:
|
||||||
|
# (1) we read the measurements
|
||||||
|
# (2) we create the corresponding factors in the graph
|
||||||
|
# (3) we solve the graph to obtain and optimal estimate of robot trajectory
|
||||||
|
print(
|
||||||
|
"-- Starting main loop: inference is performed at each time step, but we plot trajectory every 10 steps\n"
|
||||||
|
)
|
||||||
|
j = 0
|
||||||
|
for i in range(first_gps_pose, len(gps_measurements) - 1):
|
||||||
|
# At each non=IMU measurement we initialize a new node in the graph
|
||||||
|
current_pose_key = X(i)
|
||||||
|
current_vel_key = V(i)
|
||||||
|
current_bias_key = B(i)
|
||||||
|
t = gps_measurements[i].time
|
||||||
|
|
||||||
|
if i == first_gps_pose:
|
||||||
|
# Create initial estimate and prior on initial pose, velocity, and biases
|
||||||
|
new_values.insert(current_pose_key, current_pose_global)
|
||||||
|
new_values.insert(current_vel_key, current_velocity_global)
|
||||||
|
new_values.insert(current_bias_key, current_bias)
|
||||||
|
|
||||||
|
new_factors.addPriorPose3(current_pose_key, current_pose_global,
|
||||||
|
sigma_init_x)
|
||||||
|
new_factors.addPriorVector(current_vel_key,
|
||||||
|
current_velocity_global, sigma_init_v)
|
||||||
|
new_factors.addPriorConstantBias(current_bias_key, current_bias,
|
||||||
|
sigma_init_b)
|
||||||
|
else:
|
||||||
|
t_previous = gps_measurements[i - 1].time
|
||||||
|
|
||||||
|
# Summarize IMU data between the previous GPS measurement and now
|
||||||
|
current_summarized_measurement = gtsam.PreintegratedImuMeasurements(
|
||||||
|
imu_params, current_bias)
|
||||||
|
|
||||||
|
included_imu_measurement_count = 0
|
||||||
|
while (j < imu_measurements.size()
|
||||||
|
and imu_measurements[j].time <= t):
|
||||||
|
if imu_measurements[j].time >= t_previous:
|
||||||
|
current_summarized_measurement.integrateMeasurement(
|
||||||
|
imu_measurements[j].accelerometer,
|
||||||
|
imu_measurements[j].gyroscope, imu_measurements[j].dt)
|
||||||
|
included_imu_measurement_count += 1
|
||||||
|
j += 1
|
||||||
|
|
||||||
|
# Create IMU factor
|
||||||
|
previous_pose_key = X(i - 1)
|
||||||
|
previous_vel_key = V(i - 1)
|
||||||
|
previous_bias_key = B(i - 1)
|
||||||
|
|
||||||
|
new_factors.push_back(
|
||||||
|
gtsam.ImuFactor > (previous_pose_key, previous_vel_key,
|
||||||
|
current_pose_key, current_vel_key,
|
||||||
|
previous_bias_key,
|
||||||
|
current_summarized_measurement))
|
||||||
|
|
||||||
|
# Bias evolution as given in the IMU metadata
|
||||||
|
sigma_between_b = noiseModel.Diagonal.Sigmas(
|
||||||
|
np.asarray([
|
||||||
|
np.sqrt(included_imu_measurement_count) *
|
||||||
|
kitti_calibration.accelerometer_bias_sigma
|
||||||
|
] * 3 + [
|
||||||
|
np.sqrt(included_imu_measurement_count) *
|
||||||
|
kitti_calibration.gyroscope_bias_sigma
|
||||||
|
] * 3))
|
||||||
|
|
||||||
|
new_factors.push_back(
|
||||||
|
gtsam.BetweenFactorConstantBias(previous_bias_key,
|
||||||
|
current_bias_key,
|
||||||
|
gtsam.imuBias.ConstantBias(),
|
||||||
|
sigma_between_b))
|
||||||
|
|
||||||
|
# Create GPS factor
|
||||||
|
gps_pose = Pose3(current_pose_global.rotation(),
|
||||||
|
gps_measurements[i].position)
|
||||||
|
if (i % gps_skip) == 0:
|
||||||
|
new_factors.addPriorPose3(current_pose_key, gps_pose,
|
||||||
|
noise_model_gps)
|
||||||
|
new_values.insert(current_pose_key, gps_pose)
|
||||||
|
|
||||||
|
print(
|
||||||
|
"################ POSE INCLUDED AT TIME %lf ################\n",
|
||||||
|
t)
|
||||||
|
print(gps_pose.translation(), "\n")
|
||||||
|
else:
|
||||||
|
new_values.insert(current_pose_key, current_pose_global)
|
||||||
|
|
||||||
|
# Add initial values for velocity and bias based on the previous
|
||||||
|
# estimates
|
||||||
|
new_values.insert(current_vel_key, current_velocity_global)
|
||||||
|
new_values.insert(current_bias_key, current_bias)
|
||||||
|
|
||||||
|
# Update solver
|
||||||
|
# =======================================================================
|
||||||
|
# We accumulate 2*GPSskip GPS measurements before updating the solver at
|
||||||
|
# first so that the heading becomes observable.
|
||||||
|
if i > (first_gps_pose + 2 * gps_skip):
|
||||||
|
print(
|
||||||
|
"################ NEW FACTORS AT TIME %lf ################\n",
|
||||||
|
t)
|
||||||
|
new_factors.print()
|
||||||
|
|
||||||
|
isam.update(new_factors, new_values)
|
||||||
|
|
||||||
|
# Reset the newFactors and newValues list
|
||||||
|
new_factors.resize(0)
|
||||||
|
new_values.clear()
|
||||||
|
|
||||||
|
# Extract the result/current estimates
|
||||||
|
result = isam.calculateEstimate()
|
||||||
|
|
||||||
|
current_pose_global = result.atPose3(current_pose_key)
|
||||||
|
current_velocity_global = result.atVector(current_vel_key)
|
||||||
|
current_bias = result.atConstantBias(current_bias_key)
|
||||||
|
|
||||||
|
print("\n################ POSE AT TIME %lf ################\n",
|
||||||
|
t)
|
||||||
|
current_pose_global.print()
|
||||||
|
print("\n\n")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
Reference in New Issue