additional test based on Frank's colab notebook
parent
6e8e2579da
commit
f69891895a
|
|
@ -229,6 +229,82 @@ TEST(MixtureFactor, DifferentCovariances) {
|
|||
EXPECT(assert_equal(expected_values, actual_values));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Test components with differing means and covariances
|
||||
TEST(MixtureFactor, DifferentMeansAndCovariances) {
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
Values values;
|
||||
double x1 = 0.0, x2 = 7.0;
|
||||
values.insert(X(1), x1);
|
||||
|
||||
double between = 0.0;
|
||||
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
|
||||
auto f0 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
|
||||
auto f1 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
|
||||
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
||||
|
||||
// Create via toFactorGraph
|
||||
using symbol_shorthand::Z;
|
||||
Matrix H0_1, H0_2, H1_1, H1_2;
|
||||
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H0_1 /*Sp1*/},
|
||||
{X(2), H0_2 /*Tp2*/}};
|
||||
|
||||
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H1_1 /*Sp1*/},
|
||||
{X(2), H1_2 /*Tp2*/}};
|
||||
auto gm = new gtsam::GaussianMixture(
|
||||
{Z(1)}, {X(1), X(2)}, {m1},
|
||||
{std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
|
||||
std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)});
|
||||
gtsam::HybridBayesNet bn;
|
||||
bn.emplace_back(gm);
|
||||
|
||||
gtsam::VectorValues measurements;
|
||||
measurements.insert(Z(1), gtsam::Z_1x1);
|
||||
// Create FG with single GaussianMixtureFactor
|
||||
HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
|
||||
|
||||
// Linearized prior factor on X1
|
||||
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
|
||||
mixture_fg.push_back(prior);
|
||||
|
||||
// bn.print("BayesNet:");
|
||||
// mixture_fg.print("\n\n");
|
||||
|
||||
VectorValues vv{{X(1), x1 * I_1x1}, {X(2), x2 * I_1x1}};
|
||||
// std::cout << "FG error for m1=0: "
|
||||
// << mixture_fg.error(HybridValues(vv, DiscreteValues{{m1.first, 0}}))
|
||||
// << std::endl;
|
||||
// std::cout << "FG error for m1=1: "
|
||||
// << mixture_fg.error(HybridValues(vv, DiscreteValues{{m1.first, 1}}))
|
||||
// << std::endl;
|
||||
|
||||
auto hbn = mixture_fg.eliminateSequential();
|
||||
|
||||
HybridValues actual_values = hbn->optimize();
|
||||
|
||||
VectorValues cv;
|
||||
cv.insert(X(1), Vector1(0.0));
|
||||
cv.insert(X(2), Vector1(-7.0));
|
||||
DiscreteValues dv;
|
||||
dv.insert({M(1), 1});
|
||||
HybridValues expected_values(cv, dv);
|
||||
|
||||
EXPECT(assert_equal(expected_values, actual_values));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
|||
Loading…
Reference in New Issue