additional test based on Frank's colab notebook

release/4.3a0
Varun Agrawal 2024-03-06 16:12:08 -05:00
parent 6e8e2579da
commit f69891895a
1 changed files with 76 additions and 0 deletions

View File

@ -229,6 +229,82 @@ TEST(MixtureFactor, DifferentCovariances) {
EXPECT(assert_equal(expected_values, actual_values));
}
/* ************************************************************************* */
// Test components with differing means and covariances
TEST(MixtureFactor, DifferentMeansAndCovariances) {
DiscreteKey m1(M(1), 2);
Values values;
double x1 = 0.0, x2 = 7.0;
values.insert(X(1), x1);
double between = 0.0;
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
auto f0 =
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
auto f1 =
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
// Create via toFactorGraph
using symbol_shorthand::Z;
Matrix H0_1, H0_2, H1_1, H1_2;
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
//
{X(1), H0_1 /*Sp1*/},
{X(2), H0_2 /*Tp2*/}};
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
//
{X(1), H1_1 /*Sp1*/},
{X(2), H1_2 /*Tp2*/}};
auto gm = new gtsam::GaussianMixture(
{Z(1)}, {X(1), X(2)}, {m1},
{std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)});
gtsam::HybridBayesNet bn;
bn.emplace_back(gm);
gtsam::VectorValues measurements;
measurements.insert(Z(1), gtsam::Z_1x1);
// Create FG with single GaussianMixtureFactor
HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
// Linearized prior factor on X1
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
mixture_fg.push_back(prior);
// bn.print("BayesNet:");
// mixture_fg.print("\n\n");
VectorValues vv{{X(1), x1 * I_1x1}, {X(2), x2 * I_1x1}};
// std::cout << "FG error for m1=0: "
// << mixture_fg.error(HybridValues(vv, DiscreteValues{{m1.first, 0}}))
// << std::endl;
// std::cout << "FG error for m1=1: "
// << mixture_fg.error(HybridValues(vv, DiscreteValues{{m1.first, 1}}))
// << std::endl;
auto hbn = mixture_fg.eliminateSequential();
HybridValues actual_values = hbn->optimize();
VectorValues cv;
cv.insert(X(1), Vector1(0.0));
cv.insert(X(2), Vector1(-7.0));
DiscreteValues dv;
dv.insert({M(1), 1});
HybridValues expected_values(cv, dv);
EXPECT(assert_equal(expected_values, actual_values));
}
/* ************************************************************************* */
int main() {
TestResult tr;