add method to select underlying continuous Gaussian graph given discrete assignment

release/4.3a0
Varun Agrawal 2024-02-23 12:49:51 -05:00
parent 8372d8490c
commit f62805f8b3
3 changed files with 79 additions and 1 deletions

View File

@ -296,7 +296,8 @@ static std::shared_ptr<Factor> createDiscreteFactor(
// Logspace version of:
// exp(-factor->error(kEmpty)) * conditional->normalizationConstant();
// We take negative of the logNormalizationConstant `log(1/k)` to get `log(k)`.
// We take negative of the logNormalizationConstant `log(1/k)`
// to get `log(k)`.
return -factor->error(kEmpty) + (-conditional->logNormalizationConstant());
};
@ -326,6 +327,7 @@ static std::shared_ptr<Factor> createGaussianMixtureFactor(
auto hf = std::dynamic_pointer_cast<HessianFactor>(factor);
if (!hf) throw std::runtime_error("Expected HessianFactor!");
// Add 2.0 term since the constant term will be premultiplied by 0.5
// as per the Hessian definition
hf->constantTerm() += 2.0 * conditional->logNormalizationConstant();
}
return factor;
@ -563,4 +565,24 @@ AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::probPrime(
return prob_tree;
}
/* ************************************************************************ */
GaussianFactorGraph HybridGaussianFactorGraph::operator()(
const DiscreteValues &assignment) const {
GaussianFactorGraph gfg;
for (auto &&f : *this) {
if (auto gf = std::dynamic_pointer_cast<GaussianFactor>(f)) {
gfg.push_back(gf);
} else if (auto gc = std::dynamic_pointer_cast<GaussianConditional>(f)) {
gfg.push_back(gf);
} else if (auto gmf = std::dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
gfg.push_back((*gmf)(assignment));
} else if (auto gm = dynamic_pointer_cast<GaussianMixture>(f)) {
gfg.push_back((*gm)(assignment));
} else {
continue;
}
}
return gfg;
}
} // namespace gtsam

View File

@ -210,6 +210,10 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
GaussianFactorGraphTree assembleGraphTree() const;
/// @}
/// Get the GaussianFactorGraph at a given discrete assignment.
GaussianFactorGraph operator()(const DiscreteValues& assignment) const;
};
} // namespace gtsam

View File

@ -490,6 +490,58 @@ TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
}
}
/* ****************************************************************************/
// Select a particular continuous factor graph given a discrete assignment
TEST(HybridGaussianFactorGraph, DiscreteSelection) {
Switching s(3);
HybridGaussianFactorGraph graph = s.linearizedFactorGraph;
DiscreteValues dv00{{M(0), 0}, {M(1), 0}};
GaussianFactorGraph continuous_00 = graph(dv00);
GaussianFactorGraph expected_00;
expected_00.push_back(JacobianFactor(X(0), I_1x1 * 10, Vector1(-10)));
expected_00.push_back(JacobianFactor(X(0), -I_1x1, X(1), I_1x1, Vector1(-1)));
expected_00.push_back(JacobianFactor(X(1), -I_1x1, X(2), I_1x1, Vector1(-1)));
expected_00.push_back(JacobianFactor(X(1), I_1x1 * 10, Vector1(-10)));
expected_00.push_back(JacobianFactor(X(2), I_1x1 * 10, Vector1(-10)));
EXPECT(assert_equal(expected_00, continuous_00));
DiscreteValues dv01{{M(0), 0}, {M(1), 1}};
GaussianFactorGraph continuous_01 = graph(dv01);
GaussianFactorGraph expected_01;
expected_01.push_back(JacobianFactor(X(0), I_1x1 * 10, Vector1(-10)));
expected_01.push_back(JacobianFactor(X(0), -I_1x1, X(1), I_1x1, Vector1(-1)));
expected_01.push_back(JacobianFactor(X(1), -I_1x1, X(2), I_1x1, Vector1(-0)));
expected_01.push_back(JacobianFactor(X(1), I_1x1 * 10, Vector1(-10)));
expected_01.push_back(JacobianFactor(X(2), I_1x1 * 10, Vector1(-10)));
EXPECT(assert_equal(expected_01, continuous_01));
DiscreteValues dv10{{M(0), 1}, {M(1), 0}};
GaussianFactorGraph continuous_10 = graph(dv10);
GaussianFactorGraph expected_10;
expected_10.push_back(JacobianFactor(X(0), I_1x1 * 10, Vector1(-10)));
expected_10.push_back(JacobianFactor(X(0), -I_1x1, X(1), I_1x1, Vector1(-0)));
expected_10.push_back(JacobianFactor(X(1), -I_1x1, X(2), I_1x1, Vector1(-1)));
expected_10.push_back(JacobianFactor(X(1), I_1x1 * 10, Vector1(-10)));
expected_10.push_back(JacobianFactor(X(2), I_1x1 * 10, Vector1(-10)));
EXPECT(assert_equal(expected_10, continuous_10));
DiscreteValues dv11{{M(0), 1}, {M(1), 1}};
GaussianFactorGraph continuous_11 = graph(dv11);
GaussianFactorGraph expected_11;
expected_11.push_back(JacobianFactor(X(0), I_1x1 * 10, Vector1(-10)));
expected_11.push_back(JacobianFactor(X(0), -I_1x1, X(1), I_1x1, Vector1(-0)));
expected_11.push_back(JacobianFactor(X(1), -I_1x1, X(2), I_1x1, Vector1(-0)));
expected_11.push_back(JacobianFactor(X(1), I_1x1 * 10, Vector1(-10)));
expected_11.push_back(JacobianFactor(X(2), I_1x1 * 10, Vector1(-10)));
EXPECT(assert_equal(expected_11, continuous_11));
}
/* ************************************************************************* */
TEST(HybridGaussianFactorGraph, optimize) {
HybridGaussianFactorGraph hfg;