Merge pull request #920 from borglab/fix/minor-stuff

release/4.3a0
Varun Agrawal 2021-11-10 22:41:24 -05:00 committed by GitHub
commit f454bcbdf8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 77 additions and 63 deletions

View File

@ -36,17 +36,17 @@ namespace gtsam {
// no Ordering is provided. When removing optional from VariableIndex, create VariableIndex
// before creating ordering.
VariableIndex computedVariableIndex(asDerived());
return eliminateSequential(function, computedVariableIndex, orderingType);
return eliminateSequential(orderingType, function, computedVariableIndex);
}
else {
// Compute an ordering and call this function again. We are guaranteed to have a
// VariableIndex already here because we computed one if needed in the previous 'if' block.
if (orderingType == Ordering::METIS) {
Ordering computedOrdering = Ordering::Metis(asDerived());
return eliminateSequential(computedOrdering, function, variableIndex, orderingType);
return eliminateSequential(computedOrdering, function, variableIndex);
} else {
Ordering computedOrdering = Ordering::Colamd(*variableIndex);
return eliminateSequential(computedOrdering, function, variableIndex, orderingType);
return eliminateSequential(computedOrdering, function, variableIndex);
}
}
}

View File

@ -142,8 +142,9 @@ class GTSAM_EXPORT GncOptimizer {
* provides an extra interface for the user to initialize the weightst
* */
void setWeights(const Vector w) {
if(w.size() != nfg_.size()){
throw std::runtime_error("GncOptimizer::setWeights: the number of specified weights"
if (size_t(w.size()) != nfg_.size()) {
throw std::runtime_error(
"GncOptimizer::setWeights: the number of specified weights"
" does not match the size of the factor graph.");
}
weights_ = w;

View File

@ -35,8 +35,7 @@ namespace gtsam {
* zero errors anyway. However, it means that below will only be exact for the correct measurement.
*/
JacobianFactor linearizeNumerically(const NoiseModelFactor& factor,
const Values& values, double delta = 1e-5) {
const Values& values, double delta = 1e-5) {
// We will fill a vector of key/Jacobians pairs (a map would sort)
std::vector<std::pair<Key, Matrix> > jacobians;
@ -46,24 +45,24 @@ JacobianFactor linearizeNumerically(const NoiseModelFactor& factor,
// Loop over all variables
const double one_over_2delta = 1.0 / (2.0 * delta);
for(Key key: factor) {
for (Key key : factor) {
// Compute central differences using the values struct.
VectorValues dX = values.zeroVectors();
const size_t cols = dX.dim(key);
Matrix J = Matrix::Zero(rows, cols);
for (size_t col = 0; col < cols; ++col) {
Eigen::VectorXd dx = Eigen::VectorXd::Zero(cols);
dx[col] = delta;
dx(col) = delta;
dX[key] = dx;
Values eval_values = values.retract(dX);
const Eigen::VectorXd left = factor.whitenedError(eval_values);
dx[col] = -delta;
dx(col) = -delta;
dX[key] = dx;
eval_values = values.retract(dX);
const Eigen::VectorXd right = factor.whitenedError(eval_values);
J.col(col) = (left - right) * one_over_2delta;
}
jacobians.push_back(std::make_pair(key,J));
jacobians.push_back(std::make_pair(key, J));
}
// Next step...return JacobianFactor

View File

@ -115,6 +115,10 @@ class Ordering {
Ordering();
Ordering(const gtsam::Ordering& other);
template <FACTOR_GRAPH = {gtsam::NonlinearFactorGraph,
gtsam::GaussianFactorGraph}>
static gtsam::Ordering Colamd(const FACTOR_GRAPH& graph);
// Testable
void print(string s = "", const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;

View File

@ -7,73 +7,79 @@
See LICENSE for the license information
Solve a structure-from-motion problem from a "Bundle Adjustment in the Large" file
Author: Frank Dellaert (Python: Akshay Krishnan, John Lambert)
Author: Frank Dellaert (Python: Akshay Krishnan, John Lambert, Varun Agrawal)
"""
import argparse
import logging
import sys
import matplotlib.pyplot as plt
import numpy as np
import gtsam
from gtsam import (
GeneralSFMFactorCal3Bundler,
PinholeCameraCal3Bundler,
PriorFactorPinholeCameraCal3Bundler,
readBal,
symbol_shorthand
)
from gtsam import (GeneralSFMFactorCal3Bundler,
PriorFactorPinholeCameraCal3Bundler, PriorFactorPoint3)
from gtsam.symbol_shorthand import C, P # type: ignore
from gtsam.utils import plot # type: ignore
from matplotlib import pyplot as plt
C = symbol_shorthand.C
P = symbol_shorthand.P
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
DEFAULT_BAL_DATASET = "dubrovnik-3-7-pre"
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
def plot_scene(scene_data: gtsam.SfmData, result: gtsam.Values) -> None:
"""Plot the SFM results."""
plot_vals = gtsam.Values()
for cam_idx in range(scene_data.number_cameras()):
plot_vals.insert(C(cam_idx),
result.atPinholeCameraCal3Bundler(C(cam_idx)).pose())
for j in range(scene_data.number_tracks()):
plot_vals.insert(P(j), result.atPoint3(P(j)))
def run(args):
plot.plot_3d_points(0, plot_vals, linespec="g.")
plot.plot_trajectory(0, plot_vals, title="SFM results")
plt.show()
def run(args: argparse.Namespace) -> None:
""" Run LM optimization with BAL input data and report resulting error """
input_file = gtsam.findExampleDataFile(args.input_file)
input_file = args.input_file
# Load the SfM data from file
scene_data = readBal(input_file)
logging.info(f"read {scene_data.number_tracks()} tracks on {scene_data.number_cameras()} cameras\n")
scene_data = gtsam.readBal(input_file)
logging.info("read %d tracks on %d cameras\n", scene_data.number_tracks(),
scene_data.number_cameras())
# Create a factor graph
graph = gtsam.NonlinearFactorGraph()
# We share *one* noiseModel between all projection factors
noise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v
noise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v
# Add measurements to the factor graph
j = 0
for t_idx in range(scene_data.number_tracks()):
track = scene_data.track(t_idx) # SfmTrack
for j in range(scene_data.number_tracks()):
track = scene_data.track(j) # SfmTrack
# retrieve the SfmMeasurement objects
for m_idx in range(track.number_measurements()):
# i represents the camera index, and uv is the 2d measurement
i, uv = track.measurement(m_idx)
# note use of shorthand symbols C and P
graph.add(GeneralSFMFactorCal3Bundler(uv, noise, C(i), P(j)))
j += 1
# Add a prior on pose x1. This indirectly specifies where the origin is.
graph.push_back(
gtsam.PriorFactorPinholeCameraCal3Bundler(
C(0), scene_data.camera(0), gtsam.noiseModel.Isotropic.Sigma(9, 0.1)
)
)
PriorFactorPinholeCameraCal3Bundler(
C(0), scene_data.camera(0),
gtsam.noiseModel.Isotropic.Sigma(9, 0.1)))
# Also add a prior on the position of the first landmark to fix the scale
graph.push_back(
gtsam.PriorFactorPoint3(
P(0), scene_data.track(0).point3(), gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
)
)
PriorFactorPoint3(P(0),
scene_data.track(0).point3(),
gtsam.noiseModel.Isotropic.Sigma(3, 0.1)))
# Create initial estimate
initial = gtsam.Values()
i = 0
# add each PinholeCameraCal3Bundler
for cam_idx in range(scene_data.number_cameras()):
@ -81,12 +87,10 @@ def run(args):
initial.insert(C(i), camera)
i += 1
j = 0
# add each SfmTrack
for t_idx in range(scene_data.number_tracks()):
track = scene_data.track(t_idx)
for j in range(scene_data.number_tracks()):
track = scene_data.track(j)
initial.insert(P(j), track.point3())
j += 1
# Optimize the graph and print results
try:
@ -94,25 +98,31 @@ def run(args):
params.setVerbosityLM("ERROR")
lm = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = lm.optimize()
except Exception as e:
except RuntimeError:
logging.exception("LM Optimization failed")
return
# Error drops from ~2764.22 to ~0.046
logging.info(f"final error: {graph.error(result)}")
logging.info("initial error: %f", graph.error(initial))
logging.info("final error: %f", graph.error(result))
plot_scene(scene_data, result)
def main() -> None:
"""Main runner."""
parser = argparse.ArgumentParser()
parser.add_argument('-i',
'--input_file',
type=str,
default=gtsam.findExampleDataFile(DEFAULT_BAL_DATASET),
help="""Read SFM data from the specified BAL file.
The data format is described here: https://grail.cs.washington.edu/projects/bal/.
BAL files contain (nrPoses, nrPoints, nrObservations), followed by (i,j,u,v) tuples,
then (wx,wy,wz,tx,ty,tz,f,k1,k1) as Bundler camera calibrations w/ Rodrigues vector
and (x,y,z) 3d point initializations.""")
run(parser.parse_args())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'-i',
'--input_file',
type=str,
default="dubrovnik-3-7-pre",
help='Read SFM data from the specified BAL file'
'The data format is described here: https://grail.cs.washington.edu/projects/bal/.'
'BAL files contain (nrPoses, nrPoints, nrObservations), followed by (i,j,u,v) tuples, '
'then (wx,wy,wz,tx,ty,tz,f,k1,k1) as Bundler camera calibrations w/ Rodrigues vector'
'and (x,y,z) 3d point initializations.'
)
run(parser.parse_args())
main()