SmartProjectionFactor: More cleanup, added more tests, added some timing

release/4.3a0
Zsolt Kira 2013-08-07 23:32:40 +00:00
parent d33f435eab
commit f423d6f2a8
2 changed files with 73 additions and 69 deletions

View File

@ -146,7 +146,8 @@ namespace gtsam {
/// linearize returns a Hessianfactor that is an approximation of error(p)
virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values, const Ordering& ordering) const {
bool debug = true;
bool debug = false;
bool blockwise = true;
// Collect all poses (Cameras)
std::vector<Pose3> cameraPoses;
@ -177,7 +178,6 @@ namespace gtsam {
js += ordering[k];
}
bool blockwise = false;
// For debug only
std::vector<Matrix> Gs1;
std::vector<Vector> gs1;
@ -212,8 +212,7 @@ namespace gtsam {
for(size_t i2 = 0; i2 < keys_.size(); i2++) {
// we only need the upper triangular entries
Hxl[i1][i2] = Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose();
if (i1==0 & i2==0){
if (i1==0 && i2==0){
if (debug) {
std::cout << "Hoff"<< i1 << i2 << "=[" << Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose() << "];" << std::endl;
std::cout << "Hxoff"<< "=[" << Hx.at(i1) << "];" << std::endl;
@ -373,17 +372,12 @@ namespace gtsam {
if(point)
{ // triangulation produced a good estimate of landmark position
// std::cout << "point " << *point << std::endl;
for(size_t i = 0; i < measured_.size(); i++) {
Pose3 pose = cameraPoses.at(i);
PinholeCamera<CALIBRATION> camera(pose, *K_);
// std::cout << "pose.compose(*body_P_sensor_) " << pose << std::endl;
Point2 reprojectionError(camera.project(*point) - measured_.at(i));
// std::cout << "reprojectionError " << reprojectionError << std::endl;
overallError += noise_->distance( reprojectionError.vector() );
// std::cout << "noise_->distance( reprojectionError.vector() ) " << noise_->distance( reprojectionError.vector() ) << std::endl;
}
return sqrt(overallError);
}else{ // triangulation failed: we deactivate the factor, then the error should not contribute to the overall error

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file testProjectionFactor.cpp
* @file TestSmartProjectionFactor.cpp
* @brief Unit tests for ProjectionFactor Class
* @author Frank Dellaert
* @date Nov 2009
@ -56,63 +56,71 @@ static SharedNoiseModel model(noiseModel::Unit::Create(2));
using symbol_shorthand::X;
using symbol_shorthand::L;
//typedef GenericProjectionFactor<Pose3, Point3> TestProjectionFactor;
typedef SmartProjectionFactor<Pose3, Point3> TestSmartProjectionFactor;
/* ************************************************************************* *
TEST( MultiProjectionFactor, noiseless ){
cout << " ************************ MultiProjectionFactor: noiseless ****************************" << endl;
Values theta;
NonlinearFactorGraph graph;
Symbol x1('X', 1);
Symbol x2('X', 2);
// Symbol x3('X', 3);
const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
/* ************************************************************************* */
TEST( SmartProjectionFactor, Constructor) {
Key poseKey(X(1));
std::vector<Key> views;
views += x1, x2; //, x3;
views += poseKey;
Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
SimpleCamera level_camera(level_pose, *K);
std::vector<Point2> measurements;
measurements.push_back(Point2(323.0, 240.0));
// create second camera 1 meter to the right of first camera
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0));
SimpleCamera level_camera_right(level_pose_right, *K);
// landmark ~5 meters infront of camera
Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
Point2 level_uv = level_camera.project(landmark);
Point2 level_uv_right = level_camera_right.project(landmark);
Values value;
value.insert(x1, level_pose);
value.insert(x2, level_pose_right);
// poses += level_pose, level_pose_right;
vector<Point2> measurements;
measurements += level_uv, level_uv_right;
SmartProjectionFactor<Pose3, Point3, Cal3_S2> smartFactor(measurements, noiseProjection, views, K);
double actualError = smartFactor.error(value);
double expectedError = 0.0;
DOUBLES_EQUAL(expectedError, actualError, 1e-7);
TestSmartProjectionFactor factor(measurements, model, views, K);
}
/* ************************************************************************* *
TEST( MultiProjectionFactor, noisy ){
/* ************************************************************************* */
TEST( SmartProjectionFactor, ConstructorWithTransform) {
Key poseKey(X(1));
std::vector<Key> views;
views += poseKey;
std::vector<Point2> measurements;
measurements.push_back(Point2(323.0, 240.0));
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
TestSmartProjectionFactor factor(measurements, model, views, K, body_P_sensor);
}
/* ************************************************************************* */
TEST( SmartProjectionFactor, Equals ) {
// Create two identical factors and make sure they're equal
std::vector<Point2> measurements;
measurements.push_back(Point2(323.0, 240.0));
std::vector<Key> views;
views += X(1);
TestSmartProjectionFactor factor1(measurements, model, views, K);
TestSmartProjectionFactor factor2(measurements, model, views, K);
CHECK(assert_equal(factor1, factor2));
}
/* ************************************************************************* */
TEST( SmartProjectionFactor, EqualsWithTransform ) {
// Create two identical factors and make sure they're equal
std::vector<Point2> measurements;
measurements.push_back(Point2(323.0, 240.0));
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
std::vector<Key> views;
views += X(1);
TestSmartProjectionFactor factor1(measurements, model, views, K, body_P_sensor);
TestSmartProjectionFactor factor2(measurements, model, views, K, body_P_sensor);
CHECK(assert_equal(factor1, factor2));
}
/* ************************************************************************* */
TEST( SmartProjectionFactor, noisy ){
cout << " ************************ MultiProjectionFactor: noisy ****************************" << endl;
Symbol x1('X', 1);
Symbol x2('X', 2);
// Symbol x3('X', 3);
const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
@ -120,6 +128,7 @@ TEST( MultiProjectionFactor, noisy ){
views += x1, x2; //, x3;
Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
SimpleCamera level_camera(level_pose, *K);
@ -141,7 +150,6 @@ TEST( MultiProjectionFactor, noisy ){
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
values.insert(x2, level_pose_right.compose(noise_pose));
// poses += level_pose, level_pose_right;
vector<Point2> measurements;
measurements += level_uv, level_uv_right;
@ -149,16 +157,16 @@ TEST( MultiProjectionFactor, noisy ){
smartFactor(new SmartProjectionFactor<Pose3, Point3, Cal3_S2>(measurements, noiseProjection, views, K));
double actualError = smartFactor->error(values);
double expectedError = sqrt(0.08);
std::cout << "Error: " << actualError << std::endl;
// we do not expect to be able to predict the error, since the error on the pixel will change
// the triangulation of the landmark which is internal to the factor.
// DOUBLES_EQUAL(expectedError, actualError, 1e-7);
// DOUBLES_EQUAL(expectedError, actualError, 1e-7);
}
/* ************************************************************************* */
TEST( MultiProjectionFactor, 3poses ){
TEST( SmartProjectionFactor, 3poses ){
cout << " ************************ MultiProjectionFactor: 3 cams + 3 landmarks **********************" << endl;
Symbol x1('X', 1);
@ -171,6 +179,7 @@ TEST( MultiProjectionFactor, 3poses ){
views += x1, x2, x3;
Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
SimpleCamera cam1(pose1, *K);
@ -214,9 +223,6 @@ TEST( MultiProjectionFactor, 3poses ){
SmartFactor::shared_ptr smartFactor2(new SmartFactor(measurements_cam2, noiseProjection, views, K));
SmartFactor::shared_ptr smartFactor3(new SmartFactor(measurements_cam3, noiseProjection, views, K));
// double actualError = smartFactor->error(values);
// double expectedError = sqrt(0.08);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
@ -226,9 +232,6 @@ TEST( MultiProjectionFactor, 3poses ){
graph.add(PriorFactor<Pose3>(x1, pose1, noisePrior));
graph.add(PriorFactor<Pose3>(x2, pose2, noisePrior));
// smartFactor1->print("smartFactor1");
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1));
Values values;
values.insert(x1, pose1);
@ -238,16 +241,23 @@ TEST( MultiProjectionFactor, 3poses ){
LevenbergMarquardtParams params;
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
params.verbosity = NonlinearOptimizerParams::ERROR;
Values result;
gttic_(SmartProjectionFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
Values result = optimizer.optimize();
result = optimizer.optimize();
gttoc_(SmartProjectionFactor);
tictoc_finishedIteration_();
result.print("results of 3 camera, 3 landmark optimization \n");
tictoc_print_();
}
/* *************************************************************************
TEST( MultiProjectionFactor, 3poses_projection_factor ){
/* ************************************************************************* */
TEST( SmartProjectionFactor, 3poses_projection_factor ){
cout << " ************************ Normal ProjectionFactor: 3 cams + 3 landmarks **********************" << endl;
Symbol x1('X', 1);