Merge pull request #1346 from borglab/hybrid/verification
Sampling test for Hybrid Posteriorrelease/4.3a0
commit
f3c85aec2b
|
|
@ -432,6 +432,83 @@ TEST(HybridEstimation, ProbabilityMultifrontal) {
|
|||
EXPECT(assert_equal(discrete_seq, hybrid_values.discrete()));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
/**
|
||||
* Test for correctness via sampling.
|
||||
*
|
||||
* Compute the conditional P(x0, m0, x1| z0, z1)
|
||||
* with measurements z0, z1. To do so, we:
|
||||
* 1. Start with the corresponding Factor Graph `FG`.
|
||||
* 2. Eliminate the factor graph into a Bayes Net `BN`.
|
||||
* 3. Sample from the Bayes Net.
|
||||
* 4. Check that the ratio `BN(x)/FG(x) = constant` for all samples `x`.
|
||||
*/
|
||||
TEST(HybridEstimation, CorrectnessViaSampling) {
|
||||
HybridNonlinearFactorGraph nfg;
|
||||
|
||||
// First we create a hybrid nonlinear factor graph
|
||||
// which represents f(x0, x1, m0; z0, z1).
|
||||
// We linearize and eliminate this to get
|
||||
// the required Factor Graph FG and Bayes Net BN.
|
||||
const auto noise_model = noiseModel::Isotropic::Sigma(1, 1.0);
|
||||
const auto zero_motion =
|
||||
boost::make_shared<BetweenFactor<double>>(X(0), X(1), 0, noise_model);
|
||||
const auto one_motion =
|
||||
boost::make_shared<BetweenFactor<double>>(X(0), X(1), 1, noise_model);
|
||||
|
||||
nfg.emplace_nonlinear<PriorFactor<double>>(X(0), 0.0, noise_model);
|
||||
nfg.emplace_hybrid<MixtureFactor>(
|
||||
KeyVector{X(0), X(1)}, DiscreteKeys{DiscreteKey(M(0), 2)},
|
||||
std::vector<NonlinearFactor::shared_ptr>{zero_motion, one_motion});
|
||||
|
||||
Values initial;
|
||||
double z0 = 0.0, z1 = 1.0;
|
||||
initial.insert<double>(X(0), z0);
|
||||
initial.insert<double>(X(1), z1);
|
||||
|
||||
// 1. Create the factor graph from the nonlinear factor graph.
|
||||
HybridGaussianFactorGraph::shared_ptr fg = nfg.linearize(initial);
|
||||
|
||||
// 2. Eliminate into BN
|
||||
const Ordering ordering = fg->getHybridOrdering();
|
||||
HybridBayesNet::shared_ptr bn = fg->eliminateSequential(ordering);
|
||||
|
||||
// Set up sampling
|
||||
std::mt19937_64 rng(11);
|
||||
|
||||
// 3. Do sampling
|
||||
int num_samples = 10;
|
||||
|
||||
// Functor to compute the ratio between the
|
||||
// Bayes net and the factor graph.
|
||||
auto compute_ratio =
|
||||
[](const HybridBayesNet::shared_ptr& bayesNet,
|
||||
const HybridGaussianFactorGraph::shared_ptr& factorGraph,
|
||||
const HybridValues& sample) -> double {
|
||||
const DiscreteValues assignment = sample.discrete();
|
||||
// Compute in log form for numerical stability
|
||||
double log_ratio = bayesNet->error(sample.continuous(), assignment) -
|
||||
factorGraph->error(sample.continuous(), assignment);
|
||||
double ratio = exp(-log_ratio);
|
||||
return ratio;
|
||||
};
|
||||
|
||||
// The error evaluated by the factor graph and the Bayes net should differ by
|
||||
// the normalizing term computed via the Bayes net determinant.
|
||||
const HybridValues sample = bn->sample(&rng);
|
||||
double ratio = compute_ratio(bn, fg, sample);
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.0, ratio, 1e-9);
|
||||
|
||||
// 4. Check that all samples == constant
|
||||
for (size_t i = 0; i < num_samples; i++) {
|
||||
// Sample from the bayes net
|
||||
const HybridValues sample = bn->sample(&rng);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(ratio, compute_ratio(bn, fg, sample), 1e-9);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
|||
Loading…
Reference in New Issue