parent
b601eb0f92
commit
f3bbe604d6
|
@ -34,11 +34,11 @@ static GaussianFactorGraph createSimpleGaussianFactorGraph() {
|
|||
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
|
||||
fg += JacobianFactor(2, 10*eye(2), -1.0*ones(2), unit2);
|
||||
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
|
||||
fg += JacobianFactor(2, -10*eye(2), 0, 10*eye(2), (Vector(2) << 2.0, -1.0), unit2);
|
||||
fg += JacobianFactor(2, -10*eye(2), 0, 10*eye(2), (Vector(2) << 2.0, -1.0).finished(), unit2);
|
||||
// measurement between x1 and l1: l1-x1=[0.0;0.2]
|
||||
fg += JacobianFactor(2, -5*eye(2), 1, 5*eye(2), (Vector(2) << 0.0, 1.0), unit2);
|
||||
fg += JacobianFactor(2, -5*eye(2), 1, 5*eye(2), (Vector(2) << 0.0, 1.0).finished(), unit2);
|
||||
// measurement between x2 and l1: l1-x2=[-0.2;0.3]
|
||||
fg += JacobianFactor(0, -5*eye(2), 1, 5*eye(2), (Vector(2) << -1.0, 1.5), unit2);
|
||||
fg += JacobianFactor(0, -5*eye(2), 1, 5*eye(2), (Vector(2) << -1.0, 1.5).finished(), unit2);
|
||||
return fg;
|
||||
}
|
||||
|
||||
|
@ -49,11 +49,11 @@ static GaussianFactorGraph createSimpleGaussianFactorGraphUnordered() {
|
|||
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_
|
||||
fg += JacobianFactor(2, 10*eye(2), -1.0*ones(2), unit2);
|
||||
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
|
||||
fg += JacobianFactor(2, -10*eye(2), 1, 10*eye(2), (Vector(2) << 2.0, -1.0), unit2);
|
||||
fg += JacobianFactor(2, -10*eye(2), 1, 10*eye(2), (Vector(2) << 2.0, -1.0).finished(), unit2);
|
||||
// measurement between x1 and l1: l1-x1=[0.0;0.2]
|
||||
fg += JacobianFactor(2, -5*eye(2), 1, 5*eye(2), (Vector(2) << 0.0, 1.0), unit2);
|
||||
fg += JacobianFactor(2, -5*eye(2), 1, 5*eye(2), (Vector(2) << 0.0, 1.0).finished(), unit2);
|
||||
// measurement between x2 and l1: l1-x2=[-0.2;0.3]
|
||||
fg += JacobianFactor(0, -5*eye(2), 1, 5*eye(2), (Vector(2) << -1.0, 1.5), unit2);
|
||||
fg += JacobianFactor(0, -5*eye(2), 1, 5*eye(2), (Vector(2) << -1.0, 1.5).finished(), unit2);
|
||||
return fg;
|
||||
}
|
||||
|
||||
|
@ -153,7 +153,7 @@ TEST( BlockJacobiPreconditioner, verySimpleLinerSystem) {
|
|||
|
||||
// Create a Gaussian Factor Graph
|
||||
GaussianFactorGraph simpleGFG;
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 4, 1, 1, 3), (Vector(2) << 1,2 ), noiseModel::Unit::Create(2));
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 4, 1, 1, 3).finished(), (Vector(2) << 1, 2).finished(), noiseModel::Unit::Create(2));
|
||||
//simpleGFG.print("Factors\n");
|
||||
|
||||
// Expected Hessian block diagonal matrices
|
||||
|
@ -176,7 +176,7 @@ TEST( BlockJacobiPreconditioner, verySimpleLinerSystem) {
|
|||
//
|
||||
Matrix expectedH0 = it1->second;
|
||||
Matrix actualH0 = *it2;
|
||||
EXPECT(assert_equal(expectedH0, (Matrix(2,2) << 17, 7, 7, 10) ));
|
||||
EXPECT(assert_equal(expectedH0, (Matrix(2,2) << 17, 7, 7, 10).finished() ));
|
||||
EXPECT(assert_equal(expectedH0, actualH0));
|
||||
|
||||
// The corresponding Cholesky decomposition is:
|
||||
|
@ -184,7 +184,7 @@ TEST( BlockJacobiPreconditioner, verySimpleLinerSystem) {
|
|||
Preconditioner::shared_ptr preconditioner = createPreconditioner(boost::make_shared<gtsam::BlockJacobiPreconditionerParameters>());
|
||||
preconditioner->build(simpleGFG, KeyInfo(simpleGFG), std::map<Key,Vector>());
|
||||
boost::shared_ptr<BlockJacobiPreconditioner> blockJacobi = boost::dynamic_pointer_cast<BlockJacobiPreconditioner>(preconditioner);
|
||||
Vector expectedR = (Vector(4) << 4.1231, 0, 1.6977, 2.6679);
|
||||
Vector expectedR = (Vector(4) << 4.1231, 0, 1.6977, 2.6679).finished();
|
||||
double* buf = blockJacobi->getBuffer();
|
||||
for(int i=0; i<4; ++i){
|
||||
EXPECT_DOUBLES_EQUAL(expectedR(i), buf[i], 1e-4);
|
||||
|
@ -197,13 +197,13 @@ TEST( BlockJacobiPreconditioner, SimpleLinerSystem) {
|
|||
// Create a Gaussian Factor Graph
|
||||
GaussianFactorGraph simpleGFG;
|
||||
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 10, 0, 0, 10), (Vector(2) << -1, -1), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -10, 0, 0, -10), 0, (Matrix(2,2)<< 10, 0, 0, 10), (Vector(2) << 2, -1), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -5, 0, 0, -5), 1, (Matrix(2,2)<< 5, 0, 0, 5), (Vector(2) << 0, 1), unit2);
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< -5, 0, 0, -5), 1, (Matrix(2,2)<< 5, 0, 0, 5), (Vector(2) << -1, 1.5), unit2);
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
|
||||
simpleGFG += JacobianFactor(1, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 10, 0, 0, 10).finished(), (Vector(2) << -1, -1).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -10, 0, 0, -10).finished(), 0, (Matrix(2,2)<< 10, 0, 0, 10).finished(), (Vector(2) << 2, -1).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -5, 0, 0, -5).finished(), 1, (Matrix(2,2)<< 5, 0, 0, 5).finished(), (Vector(2) << 0, 1).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< -5, 0, 0, -5).finished(), 1, (Matrix(2,2)<< 5, 0, 0, 5).finished(), (Vector(2) << -1, 1.5).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(1, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
|
||||
|
||||
// Expected Hessian block diagonal matrices
|
||||
std::map<Key, Matrix> expectedHessian =simpleGFG.hessianBlockDiagonal();
|
||||
|
@ -238,12 +238,12 @@ TEST( PCGsolver, verySimpleLinearSystem) {
|
|||
|
||||
// Create a Gaussian Factor Graph
|
||||
GaussianFactorGraph simpleGFG;
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 4, 1, 1, 3), (Vector(2) << 1,2 ), noiseModel::Unit::Create(2));
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 4, 1, 1, 3).finished(), (Vector(2) << 1,2 ).finished(), noiseModel::Unit::Create(2));
|
||||
//simpleGFG.print("Factors\n");
|
||||
|
||||
// Exact solution already known
|
||||
VectorValues exactSolution;
|
||||
exactSolution.insert(0, (Vector(2) << 1./11., 7./11.));
|
||||
exactSolution.insert(0, (Vector(2) << 1./11., 7./11.).finished());
|
||||
//exactSolution.print("Exact");
|
||||
|
||||
// Solve the system using direct method
|
||||
|
@ -280,20 +280,20 @@ TEST(PCGSolver, simpleLinearSystem) {
|
|||
// Create a Gaussian Factor Graph
|
||||
GaussianFactorGraph simpleGFG;
|
||||
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 10, 0, 0, 10), (Vector(2) << -1, -1), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -10, 0, 0, -10), 0, (Matrix(2,2)<< 10, 0, 0, 10), (Vector(2) << 2, -1), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -5, 0, 0, -5), 1, (Matrix(2,2)<< 5, 0, 0, 5), (Vector(2) << 0, 1), unit2);
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< -5, 0, 0, -5), 1, (Matrix(2,2)<< 5, 0, 0, 5), (Vector(2) << -1, 1.5), unit2);
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
|
||||
simpleGFG += JacobianFactor(1, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 1, 0, 0, 1), (Vector(2) << 0, 0), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 10, 0, 0, 10).finished(), (Vector(2) << -1, -1).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -10, 0, 0, -10).finished(), 0, (Matrix(2,2)<< 10, 0, 0, 10).finished(), (Vector(2) << 2, -1).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -5, 0, 0, -5).finished(), 1, (Matrix(2,2)<< 5, 0, 0, 5).finished(), (Vector(2) << 0, 1).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< -5, 0, 0, -5).finished(), 1, (Matrix(2,2)<< 5, 0, 0, 5).finished(), (Vector(2) << -1, 1.5).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(1, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
|
||||
//simpleGFG.print("Factors\n");
|
||||
|
||||
// Expected solution
|
||||
VectorValues expectedSolution;
|
||||
expectedSolution.insert(0, (Vector(2) << 0.100498, -0.196756));
|
||||
expectedSolution.insert(2, (Vector(2) << -0.0990413, -0.0980577));
|
||||
expectedSolution.insert(1, (Vector(2) << -0.0973252, 0.100582));
|
||||
expectedSolution.insert(0, (Vector(2) << 0.100498, -0.196756).finished());
|
||||
expectedSolution.insert(2, (Vector(2) << -0.0990413, -0.0980577).finished());
|
||||
expectedSolution.insert(1, (Vector(2) << -0.0973252, 0.100582).finished());
|
||||
|
||||
// Solve the system using direct method
|
||||
VectorValues deltaDirect = simpleGFG.optimize();
|
||||
|
@ -303,9 +303,9 @@ TEST(PCGSolver, simpleLinearSystem) {
|
|||
|
||||
// Solve the system using PCG
|
||||
VectorValues initial;
|
||||
initial.insert(0, (Vector(2) << 0.1, -0.1));
|
||||
initial.insert(1, (Vector(2) << -0.1, 0.1));
|
||||
initial.insert(2, (Vector(2) << -0.1, -0.1));
|
||||
initial.insert(0, (Vector(2) << 0.1, -0.1).finished());
|
||||
initial.insert(1, (Vector(2) << -0.1, 0.1).finished());
|
||||
initial.insert(2, (Vector(2) << -0.1, -0.1).finished());
|
||||
|
||||
// With Dummy preconditioner
|
||||
gtsam::PCGSolverParameters::shared_ptr pcg = boost::make_shared<gtsam::PCGSolverParameters>();
|
||||
|
|
Loading…
Reference in New Issue