completed test infrastructure for simulated and real consistency tests
parent
46c6d41cd6
commit
f38d8d7c83
|
@ -28,10 +28,13 @@ noiseBias = noiseModel.Isotropic.Sigma(6, epsBias);
|
|||
|
||||
%% Between metadata
|
||||
if useRealData == 1
|
||||
sigma_ang = 1e-4; sigma_cart = 0.01;
|
||||
sigma_ang = 1e-1; sigma_cart = 1;
|
||||
else
|
||||
sigma_ang = 1e-2; sigma_cart = 0.1;
|
||||
end
|
||||
testName = sprintf('sa-%1.2g-sc-%1.2g',sigma_ang,sigma_cart)
|
||||
folderName = 'results/'
|
||||
|
||||
noiseVectorPose = [sigma_ang; sigma_ang; sigma_ang; sigma_cart; sigma_cart; sigma_cart];
|
||||
noisePose = noiseModel.Diagonal.Sigmas(noiseVectorPose);
|
||||
|
||||
|
@ -182,7 +185,7 @@ hold on;
|
|||
plot3DTrajectory(gtValues, '-r', [], 1, Marginals(gtGraph, gtValues));
|
||||
axis equal
|
||||
|
||||
dis('Plotted ground truth')
|
||||
disp('Plotted ground truth')
|
||||
|
||||
numMonteCarloRuns = 100;
|
||||
for k=1:numMonteCarloRuns
|
||||
|
@ -191,24 +194,17 @@ for k=1:numMonteCarloRuns
|
|||
graph = NonlinearFactorGraph;
|
||||
|
||||
% noisy prior
|
||||
if useRealData == 1
|
||||
currentPoseKey = symbol('x', 0);
|
||||
initialPosition = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(1); gtScenario.Lon(1); gtScenario.Alt(1)]);
|
||||
initialRotation = [gtScenario.Roll(1); gtScenario.Pitch(1); gtScenario.Heading(1)];
|
||||
initialPose = Pose3.Expmap([initialRotation; initialPosition] + (noiseVector .* randn(6,1))); % initial noisy pose
|
||||
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noisePose));
|
||||
else
|
||||
currentPoseKey = symbol('x', 0);
|
||||
noisyDelta = noiseVectorPose .* randn(6,1);
|
||||
initialPose = Pose3.Expmap(noisyDelta);
|
||||
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noisePose));
|
||||
end
|
||||
currentPoseKey = symbol('x', 0);
|
||||
measurements.posePrior = currentPose;
|
||||
noisyDelta = noiseVectorPose .* randn(6,1);
|
||||
noisyInitialPose = Pose3.Expmap(noisyDelta);
|
||||
graph.add(PriorFactorPose3(currentPoseKey, noisyInitialPose, noisePose));
|
||||
|
||||
for i=1:size(gtDeltaMatrix,1)
|
||||
for i=1:size(measurements.gtDeltaMatrix,1)
|
||||
currentPoseKey = symbol('x', i);
|
||||
|
||||
% for each measurement: add noise and add to graph
|
||||
noisyDelta = gtDeltaMatrix(i,:)' + (noiseVectorPose .* randn(6,1));
|
||||
noisyDelta = measurements.gtDeltaMatrix(i,:)' + (noiseVectorPose .* randn(6,1));
|
||||
noisyDeltaPose = Pose3.Expmap(noisyDelta);
|
||||
|
||||
% Add the factors to the factor graph
|
||||
|
@ -225,7 +221,7 @@ for k=1:numMonteCarloRuns
|
|||
marginals = Marginals(graph, estimate);
|
||||
|
||||
% for each pose in the trajectory
|
||||
for i=1:size(gtDeltaMatrix,1)+1
|
||||
for i=1:size(measurements.gtDeltaMatrix,1)+1
|
||||
% compute estimation errors
|
||||
currentPoseKey = symbol('x', i-1);
|
||||
gtPosition = gtValues.at(currentPoseKey).translation.vector;
|
||||
|
@ -252,12 +248,16 @@ plot(3*ones(size(ANEES,2),1),'k--'); % Expectation(ANEES) = number of dof
|
|||
box on
|
||||
set(gca,'Fontsize',16)
|
||||
title('NEES and ANEES');
|
||||
%print('-djpeg', horzcat('runs-',testName));
|
||||
saveas(gcf,horzcat(folderName,'runs-',testName,'.fig'),'fig');
|
||||
|
||||
%%
|
||||
figure(1)
|
||||
box on
|
||||
set(gca,'Fontsize',16)
|
||||
title('Ground truth and estimates for each MC runs');
|
||||
%print('-djpeg', horzcat('gt-',testName));
|
||||
saveas(gcf,horzcat(folderName,'gt-',testName,'.fig'),'fig');
|
||||
|
||||
%% Let us compute statistics on the overall NEES
|
||||
n = 3; % position vector dimension
|
||||
|
@ -282,6 +282,11 @@ plot(r2*ones(size(ANEES,2),1),'k-.');
|
|||
box on
|
||||
set(gca,'Fontsize',16)
|
||||
title('NEES normalized by dof VS bounds');
|
||||
%print('-djpeg', horzcat('ANEES-',testName));
|
||||
saveas(gcf,horzcat(folderName,'ANEES-',testName,'.fig'),'fig');
|
||||
|
||||
logFile = horzcat(folderName,'log-',testName);
|
||||
save(logFile)
|
||||
|
||||
%% NEES COMPUTATION (Bar-Shalom 2001, Section 5.4)
|
||||
% the nees for a single experiment (i) is defined as
|
||||
|
|
Loading…
Reference in New Issue