Refactor TOAFactor and test
parent
2087075ee7
commit
f3865539c6
|
@ -30,20 +30,19 @@ class TOAFactor : public ExpressionFactor<double> {
|
|||
|
||||
public:
|
||||
/**
|
||||
* Most genral constructor with two expressions
|
||||
* Most general constructor with two expressions
|
||||
* @param eventExpression expression yielding an event
|
||||
* @param sensorExpression expression yielding a sensor location
|
||||
* @param toaMeasurement time of arrival at sensor
|
||||
* @param model noise model
|
||||
* @param toa optional time of arrival functor
|
||||
* @param speed optional speed of signal, in m/sec
|
||||
*/
|
||||
TOAFactor(const Expression<Event>& eventExpression,
|
||||
const Expression<Point3>& sensorExpression, double toaMeasurement,
|
||||
const SharedNoiseModel& model,
|
||||
const TimeOfArrival& toa = TimeOfArrival())
|
||||
const SharedNoiseModel& model, double speed = 330)
|
||||
: ExpressionFactor<double>(
|
||||
model, toaMeasurement,
|
||||
Double_(toa, eventExpression, sensorExpression)) {}
|
||||
Double_(TimeOfArrival(speed), eventExpression, sensorExpression)) {}
|
||||
|
||||
/**
|
||||
* Constructor with fixed sensor
|
||||
|
@ -55,9 +54,9 @@ class TOAFactor : public ExpressionFactor<double> {
|
|||
*/
|
||||
TOAFactor(const Expression<Event>& eventExpression, const Point3& sensor,
|
||||
double toaMeasurement, const SharedNoiseModel& model,
|
||||
const TimeOfArrival& toa = TimeOfArrival())
|
||||
double speed = 330)
|
||||
: TOAFactor(eventExpression, Expression<Point3>(sensor), toaMeasurement,
|
||||
model, toa) {}
|
||||
model, speed) {}
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -44,58 +44,46 @@ static SharedNoiseModel model(noiseModel::Isotropic::Sigma(1, 0.5 * ms));
|
|||
|
||||
static const double timeOfEvent = 25;
|
||||
static const Event exampleEvent(timeOfEvent, 1, 0, 0);
|
||||
static const Point3 microphoneAt0(0, 0, 0);
|
||||
static const Point3 sensorAt0(0, 0, 0);
|
||||
|
||||
//*****************************************************************************
|
||||
TEST(TOAFactor, NewWay) {
|
||||
Key key = 12;
|
||||
Event_ eventExpression(key);
|
||||
double measurement = 7;
|
||||
TOAFactor factor(eventExpression, microphoneAt0, measurement, model);
|
||||
TOAFactor factor(key, sensorAt0, measurement, model);
|
||||
}
|
||||
|
||||
//*****************************************************************************
|
||||
TEST(TOAFactor, WholeEnchilada) {
|
||||
static const bool verbose = false;
|
||||
|
||||
// Create microphones
|
||||
// Create sensors
|
||||
const double height = 0.5;
|
||||
vector<Point3> microphones;
|
||||
microphones.push_back(Point3(0, 0, height));
|
||||
microphones.push_back(Point3(403 * cm, 0, height));
|
||||
microphones.push_back(Point3(403 * cm, 403 * cm, height));
|
||||
microphones.push_back(Point3(0, 403 * cm, 2 * height));
|
||||
EXPECT_LONGS_EQUAL(4, microphones.size());
|
||||
// microphones.push_back(Point3(200 * cm, 200 * cm, height));
|
||||
vector<Point3> sensors;
|
||||
sensors.push_back(Point3(0, 0, height));
|
||||
sensors.push_back(Point3(403 * cm, 0, height));
|
||||
sensors.push_back(Point3(403 * cm, 403 * cm, height));
|
||||
sensors.push_back(Point3(0, 403 * cm, 2 * height));
|
||||
EXPECT_LONGS_EQUAL(4, sensors.size());
|
||||
// sensors.push_back(Point3(200 * cm, 200 * cm, height));
|
||||
|
||||
// Create a ground truth point
|
||||
const double timeOfEvent = 0;
|
||||
Event groundTruthEvent(timeOfEvent, 245 * cm, 201.5 * cm, (212 - 45) * cm);
|
||||
|
||||
// Simulate simulatedTOA
|
||||
size_t K = microphones.size();
|
||||
size_t K = sensors.size();
|
||||
vector<double> simulatedTOA(K);
|
||||
TimeOfArrival toa;
|
||||
for (size_t i = 0; i < K; i++) {
|
||||
simulatedTOA[i] = toa(groundTruthEvent, microphones[i]);
|
||||
if (verbose) {
|
||||
cout << "mic" << i << " = " << microphones[i] << endl;
|
||||
cout << "z" << i << " = " << simulatedTOA[i] / ms << endl;
|
||||
}
|
||||
simulatedTOA[i] = toa(groundTruthEvent, sensors[i]);
|
||||
}
|
||||
|
||||
// Now, estimate using non-linear optimization
|
||||
NonlinearFactorGraph graph;
|
||||
Key key = 12;
|
||||
Event_ eventExpression(key);
|
||||
for (size_t i = 0; i < K; i++) {
|
||||
graph.emplace_shared<TOAFactor>(eventExpression, microphones[i],
|
||||
simulatedTOA[i], model);
|
||||
graph.emplace_shared<TOAFactor>(key, sensors[i], simulatedTOA[i], model);
|
||||
}
|
||||
|
||||
/// Print the graph
|
||||
if (verbose) GTSAM_PRINT(graph);
|
||||
|
||||
// Create initial estimate
|
||||
Values initialEstimate;
|
||||
// Event estimatedEvent(timeOfEvent -10, 200 * cm, 150 * cm, 350 * cm);
|
||||
|
@ -104,16 +92,11 @@ TEST(TOAFactor, WholeEnchilada) {
|
|||
Event estimatedEvent = groundTruthEvent.retract(delta);
|
||||
initialEstimate.insert(key, estimatedEvent);
|
||||
|
||||
// Print
|
||||
if (verbose) initialEstimate.print("Initial Estimate:\n");
|
||||
|
||||
// Optimize using Levenberg-Marquardt optimization.
|
||||
LevenbergMarquardtParams params;
|
||||
params.setAbsoluteErrorTol(1e-10);
|
||||
if (verbose) params.setVerbosity("ERROR");
|
||||
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, params);
|
||||
Values result = optimizer.optimize();
|
||||
if (verbose) result.print("Final Result:\n");
|
||||
|
||||
EXPECT(assert_equal(groundTruthEvent, result.at<Event>(key), 1e-6));
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue