Comments and formatting, and much cleaner solve
parent
abbbd02979
commit
f2da19e4de
|
@ -21,7 +21,7 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <gtsam/linear/KalmanFilter.h>
|
#include <gtsam/linear/KalmanFilter.h>
|
||||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
#include <gtsam/linear/GaussianBayesNet.h>
|
||||||
#include <gtsam/linear/JacobianFactor.h>
|
#include <gtsam/linear/JacobianFactor.h>
|
||||||
#include <gtsam/linear/HessianFactor.h>
|
#include <gtsam/linear/HessianFactor.h>
|
||||||
#include <gtsam/base/Testable.h>
|
#include <gtsam/base/Testable.h>
|
||||||
|
@ -34,134 +34,145 @@ using namespace std;
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
/// Auxiliary function to solve factor graph and return pointer to root conditional
|
// Auxiliary function to solve factor graph and return pointer to root conditional
|
||||||
KalmanFilter::State solve(const GaussianFactorGraph& factorGraph, const GaussianFactorGraph::Eliminate& function)
|
static KalmanFilter::State solve(const GaussianFactorGraph& factorGraph,
|
||||||
{
|
const GaussianFactorGraph::Eliminate& function) {
|
||||||
// Do a dense solve, e.g. don't use the multifrontal framework
|
|
||||||
// Eliminate the keys in increasing order so that the last key is the one we want to keep.
|
|
||||||
FastSet<Key> keysToEliminate = factorGraph.keys();
|
|
||||||
FastSet<Key>::const_iterator lastKeyPos = keysToEliminate.end();
|
|
||||||
-- lastKeyPos;
|
|
||||||
Key remainingKey = *lastKeyPos;
|
|
||||||
keysToEliminate.erase(lastKeyPos);
|
|
||||||
GaussianFactorGraph::EliminationResult result = function(factorGraph, Ordering(keysToEliminate));
|
|
||||||
|
|
||||||
// As this is a filter, all we need is the posterior P(x_t). Eliminate it to be
|
// We will eliminate the keys in increasing order, except the last key
|
||||||
// upper-triangular.
|
Ordering ordering1(factorGraph.keys());
|
||||||
GaussianFactorGraph graphOfRemainingFactor;
|
Key lastKey = ordering1.back();
|
||||||
graphOfRemainingFactor += result.second;
|
ordering1.pop_back();
|
||||||
GaussianDensity::shared_ptr state = boost::make_shared<GaussianDensity>(
|
|
||||||
*function(graphOfRemainingFactor, Ordering(cref_list_of<1>(remainingKey))).first);
|
|
||||||
|
|
||||||
return state;
|
// Eliminate the graph using the provided Eliminate function
|
||||||
}
|
GaussianConditional::shared_ptr conditional;
|
||||||
|
GaussianFactor::shared_ptr factor;
|
||||||
|
boost::tie(conditional, factor) = function(factorGraph, ordering1);
|
||||||
|
|
||||||
/* ************************************************************************* */
|
// As this is a filter, all we need is the posterior P(x_t).
|
||||||
KalmanFilter::State fuse(const KalmanFilter::State& p, GaussianFactor::shared_ptr newFactor,
|
GaussianFactorGraph graphOfRemainingFactor;
|
||||||
const GaussianFactorGraph::Eliminate& function)
|
graphOfRemainingFactor += factor;
|
||||||
{
|
|
||||||
// Create a factor graph
|
|
||||||
GaussianFactorGraph factorGraph;
|
|
||||||
factorGraph += p, newFactor;
|
|
||||||
|
|
||||||
// Eliminate graph in order x0, x1, to get Bayes net P(x0|x1)P(x1)
|
// Eliminate it to be upper-triangular.
|
||||||
return solve(factorGraph, function);
|
Ordering ordering2;
|
||||||
}
|
ordering2 += lastKey;
|
||||||
|
boost::tie(conditional, factor) = function(graphOfRemainingFactor, ordering2);
|
||||||
|
|
||||||
/* ************************************************************************* */
|
return boost::make_shared<GaussianDensity>(*conditional);
|
||||||
GaussianFactorGraph::Eliminate KalmanFilter::factorization() const {
|
}
|
||||||
return method_ == QR ?
|
|
||||||
GaussianFactorGraph::Eliminate(EliminateQR) :
|
|
||||||
GaussianFactorGraph::Eliminate(EliminateCholesky);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
KalmanFilter::State KalmanFilter::init(const Vector& x0, const SharedDiagonal& P0) {
|
static KalmanFilter::State fuse(const KalmanFilter::State& p,
|
||||||
|
GaussianFactor::shared_ptr newFactor,
|
||||||
|
const GaussianFactorGraph::Eliminate& function) {
|
||||||
|
// Create a factor graph
|
||||||
|
GaussianFactorGraph factorGraph;
|
||||||
|
factorGraph += p, newFactor;
|
||||||
|
|
||||||
// Create a factor graph f(x0), eliminate it into P(x0)
|
// Eliminate graph in order x0, x1, to get Bayes net P(x0|x1)P(x1)
|
||||||
GaussianFactorGraph factorGraph;
|
return solve(factorGraph, function);
|
||||||
factorGraph += JacobianFactor(0, I_, x0, P0); // |x-x0|^2_diagSigma
|
}
|
||||||
return solve(factorGraph, factorization());
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
KalmanFilter::State KalmanFilter::init(const Vector& x, const Matrix& P0) {
|
GaussianFactorGraph::Eliminate KalmanFilter::factorization() const {
|
||||||
|
return
|
||||||
|
method_ == QR ? GaussianFactorGraph::Eliminate(EliminateQR) :
|
||||||
|
GaussianFactorGraph::Eliminate(EliminateCholesky);
|
||||||
|
}
|
||||||
|
|
||||||
// Create a factor graph f(x0), eliminate it into P(x0)
|
/* ************************************************************************* */
|
||||||
GaussianFactorGraph factorGraph;
|
KalmanFilter::State KalmanFilter::init(const Vector& x0,
|
||||||
factorGraph += HessianFactor(0, x, P0); // 0.5*(x-x0)'*inv(Sigma)*(x-x0)
|
const SharedDiagonal& P0) {
|
||||||
return solve(factorGraph, factorization());
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
// Create a factor graph f(x0), eliminate it into P(x0)
|
||||||
void KalmanFilter::print(const string& s) const {
|
GaussianFactorGraph factorGraph;
|
||||||
cout << "KalmanFilter " << s << ", dim = " << n_ << endl;
|
factorGraph += JacobianFactor(0, I_, x0, P0); // |x-x0|^2_diagSigma
|
||||||
}
|
return solve(factorGraph, factorization());
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
KalmanFilter::State KalmanFilter::predict(const State& p, const Matrix& F,
|
KalmanFilter::State KalmanFilter::init(const Vector& x, const Matrix& P0) {
|
||||||
const Matrix& B, const Vector& u, const SharedDiagonal& model) {
|
|
||||||
|
|
||||||
// The factor related to the motion model is defined as
|
// Create a factor graph f(x0), eliminate it into P(x0)
|
||||||
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
|
GaussianFactorGraph factorGraph;
|
||||||
Key k = step(p);
|
factorGraph += HessianFactor(0, x, P0); // 0.5*(x-x0)'*inv(Sigma)*(x-x0)
|
||||||
return fuse(p, boost::make_shared<JacobianFactor>(k, -F, k + 1, I_, B * u, model), factorization());
|
return solve(factorGraph, factorization());
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
KalmanFilter::State KalmanFilter::predictQ(const State& p, const Matrix& F,
|
void KalmanFilter::print(const string& s) const {
|
||||||
const Matrix& B, const Vector& u, const Matrix& Q) {
|
cout << "KalmanFilter " << s << ", dim = " << n_ << endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
KalmanFilter::State KalmanFilter::predict(const State& p, const Matrix& F,
|
||||||
|
const Matrix& B, const Vector& u, const SharedDiagonal& model) {
|
||||||
|
|
||||||
|
// The factor related to the motion model is defined as
|
||||||
|
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
|
||||||
|
Key k = step(p);
|
||||||
|
return fuse(p,
|
||||||
|
boost::make_shared<JacobianFactor>(k, -F, k + 1, I_, B * u, model),
|
||||||
|
factorization());
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
KalmanFilter::State KalmanFilter::predictQ(const State& p, const Matrix& F,
|
||||||
|
const Matrix& B, const Vector& u, const Matrix& Q) {
|
||||||
|
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
DenseIndex n = F.cols();
|
DenseIndex n = F.cols();
|
||||||
assert(F.rows() == n);
|
assert(F.rows() == n);
|
||||||
assert(B.rows() == n);
|
assert(B.rows() == n);
|
||||||
assert(B.cols() == u.size());
|
assert(B.cols() == u.size());
|
||||||
assert(Q.rows() == n);
|
assert(Q.rows() == n);
|
||||||
assert(Q.cols() == n);
|
assert(Q.cols() == n);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// The factor related to the motion model is defined as
|
// The factor related to the motion model is defined as
|
||||||
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
|
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
|
||||||
// See documentation in HessianFactor, we have A1 = -F, A2 = I_, b = B*u:
|
// See documentation in HessianFactor, we have A1 = -F, A2 = I_, b = B*u:
|
||||||
// TODO: starts to seem more elaborate than straight-up KF equations?
|
// TODO: starts to seem more elaborate than straight-up KF equations?
|
||||||
Matrix M = inverse(Q), Ft = trans(F);
|
Matrix M = inverse(Q), Ft = trans(F);
|
||||||
Matrix G12 = -Ft * M, G11 = -G12 * F, G22 = M;
|
Matrix G12 = -Ft * M, G11 = -G12 * F, G22 = M;
|
||||||
Vector b = B * u, g2 = M * b, g1 = -Ft * g2;
|
Vector b = B * u, g2 = M * b, g1 = -Ft * g2;
|
||||||
double f = dot(b, g2);
|
double f = dot(b, g2);
|
||||||
Key k = step(p);
|
Key k = step(p);
|
||||||
return fuse(p, boost::make_shared<HessianFactor>(k, k + 1, G11, G12, g1, G22, g2, f), factorization());
|
return fuse(p,
|
||||||
}
|
boost::make_shared<HessianFactor>(k, k + 1, G11, G12, g1, G22, g2, f),
|
||||||
|
factorization());
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
KalmanFilter::State KalmanFilter::predict2(const State& p, const Matrix& A0,
|
KalmanFilter::State KalmanFilter::predict2(const State& p, const Matrix& A0,
|
||||||
const Matrix& A1, const Vector& b, const SharedDiagonal& model) {
|
const Matrix& A1, const Vector& b, const SharedDiagonal& model) {
|
||||||
// Nhe factor related to the motion model is defined as
|
// Nhe factor related to the motion model is defined as
|
||||||
// f2(x_{t},x_{t+1}) = |A0*x_{t} + A1*x_{t+1} - b|^2
|
// f2(x_{t},x_{t+1}) = |A0*x_{t} + A1*x_{t+1} - b|^2
|
||||||
Key k = step(p);
|
Key k = step(p);
|
||||||
return fuse(p, boost::make_shared<JacobianFactor>(k, A0, k + 1, A1, b, model), factorization());
|
return fuse(p, boost::make_shared<JacobianFactor>(k, A0, k + 1, A1, b, model),
|
||||||
}
|
factorization());
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
KalmanFilter::State KalmanFilter::update(const State& p, const Matrix& H,
|
KalmanFilter::State KalmanFilter::update(const State& p, const Matrix& H,
|
||||||
const Vector& z, const SharedDiagonal& model) {
|
const Vector& z, const SharedDiagonal& model) {
|
||||||
// The factor related to the measurements would be defined as
|
// The factor related to the measurements would be defined as
|
||||||
// f2 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
|
// f2 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
|
||||||
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
|
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
|
||||||
Key k = step(p);
|
Key k = step(p);
|
||||||
return fuse(p, boost::make_shared<JacobianFactor>(k, H, z, model), factorization());
|
return fuse(p, boost::make_shared<JacobianFactor>(k, H, z, model),
|
||||||
}
|
factorization());
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
KalmanFilter::State KalmanFilter::updateQ(const State& p, const Matrix& H, const Vector& z,
|
KalmanFilter::State KalmanFilter::updateQ(const State& p, const Matrix& H,
|
||||||
const Matrix& Q) {
|
const Vector& z, const Matrix& Q) {
|
||||||
Key k = step(p);
|
Key k = step(p);
|
||||||
Matrix M = inverse(Q), Ht = trans(H);
|
Matrix M = inverse(Q), Ht = trans(H);
|
||||||
Matrix G = Ht * M * H;
|
Matrix G = Ht * M * H;
|
||||||
Vector g = Ht * M * z;
|
Vector g = Ht * M * z;
|
||||||
double f = dot(z, M * z);
|
double f = dot(z, M * z);
|
||||||
return fuse(p, boost::make_shared<HessianFactor>(k, G, g, f), factorization());
|
return fuse(p, boost::make_shared<HessianFactor>(k, G, g, f), factorization());
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
||||||
|
|
|
@ -29,120 +29,119 @@
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Kalman Filter class
|
||||||
|
*
|
||||||
|
* Knows how to maintain a Gaussian density under linear-Gaussian motion and
|
||||||
|
* measurement models. It uses the square-root information form, as usual in GTSAM.
|
||||||
|
*
|
||||||
|
* The filter is functional, in that it does not have state: you call init() to create
|
||||||
|
* an initial state, then predict() and update() that create new states out of an old state.
|
||||||
|
*/
|
||||||
|
class GTSAM_EXPORT KalmanFilter {
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Kalman Filter class
|
* This Kalman filter is a Square-root Information filter
|
||||||
*
|
* The type below allows you to specify the factorization variant.
|
||||||
* Knows how to maintain a Gaussian density under linear-Gaussian motion and
|
|
||||||
* measurement models. It uses the square-root information form, as usual in GTSAM.
|
|
||||||
*
|
|
||||||
* The filter is functional, in that it does not have state: you call init() to create
|
|
||||||
* an initial state, then predict() and update() that create new states out of old.
|
|
||||||
*/
|
*/
|
||||||
class GTSAM_EXPORT KalmanFilter {
|
enum Factorization {
|
||||||
|
QR, CHOLESKY
|
||||||
public:
|
|
||||||
|
|
||||||
/**
|
|
||||||
* This Kalman filter is a Square-root Information filter
|
|
||||||
* The type below allows you to specify the factorization variant.
|
|
||||||
*/
|
|
||||||
enum Factorization {
|
|
||||||
QR, CHOLESKY
|
|
||||||
};
|
|
||||||
|
|
||||||
/**
|
|
||||||
* The Kalman filter state is simply a GaussianDensity
|
|
||||||
*/
|
|
||||||
typedef GaussianDensity::shared_ptr State;
|
|
||||||
|
|
||||||
private:
|
|
||||||
|
|
||||||
const size_t n_; /** dimensionality of state */
|
|
||||||
const Matrix I_; /** identity matrix of size n*n */
|
|
||||||
const Factorization method_; /** algorithm */
|
|
||||||
|
|
||||||
GaussianFactorGraph::Eliminate factorization() const;
|
|
||||||
|
|
||||||
public:
|
|
||||||
|
|
||||||
// private constructor
|
|
||||||
KalmanFilter(size_t n, Factorization method =
|
|
||||||
KALMANFILTER_DEFAULT_FACTORIZATION) :
|
|
||||||
n_(n), I_(eye(n_, n_)), method_(method) {
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Create initial state, i.e., prior density at time k=0
|
|
||||||
* In Kalman Filter notation, this are is x_{0|0} and P_{0|0}
|
|
||||||
* @param x0 estimate at time 0
|
|
||||||
* @param P0 covariance at time 0, given as a diagonal Gaussian 'model'
|
|
||||||
*/
|
|
||||||
State init(const Vector& x0, const SharedDiagonal& P0);
|
|
||||||
|
|
||||||
/// version of init with a full covariance matrix
|
|
||||||
State init(const Vector& x0, const Matrix& P0);
|
|
||||||
|
|
||||||
/// print
|
|
||||||
void print(const std::string& s = "") const;
|
|
||||||
|
|
||||||
/** Return step index k, starts at 0, incremented at each predict. */
|
|
||||||
static Key step(const State& p) {
|
|
||||||
return p->firstFrontalKey();
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Predict the state P(x_{t+1}|Z^t)
|
|
||||||
* In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
|
|
||||||
* After the call, that is the density that can be queried.
|
|
||||||
* Details and parameters:
|
|
||||||
* In a linear Kalman Filter, the motion model is f(x_{t}) = F*x_{t} + B*u_{t} + w
|
|
||||||
* where F is the state transition model/matrix, B is the control input model,
|
|
||||||
* and w is zero-mean, Gaussian white noise with covariance Q.
|
|
||||||
*/
|
|
||||||
State predict(const State& p, const Matrix& F, const Matrix& B,
|
|
||||||
const Vector& u, const SharedDiagonal& modelQ);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Version of predict with full covariance
|
|
||||||
* Q is normally derived as G*w*G^T where w models uncertainty of some
|
|
||||||
* physical property, such as velocity or acceleration, and G is derived from physics.
|
|
||||||
* This version allows more realistic models than a diagonal covariance matrix.
|
|
||||||
*/
|
|
||||||
State predictQ(const State& p, const Matrix& F, const Matrix& B,
|
|
||||||
const Vector& u, const Matrix& Q);
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Predict the state P(x_{t+1}|Z^t)
|
|
||||||
* In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
|
|
||||||
* After the call, that is the density that can be queried.
|
|
||||||
* Details and parameters:
|
|
||||||
* This version of predict takes GaussianFactor motion model [A0 A1 b]
|
|
||||||
* with an optional noise model.
|
|
||||||
*/
|
|
||||||
State predict2(const State& p, const Matrix& A0, const Matrix& A1,
|
|
||||||
const Vector& b, const SharedDiagonal& model);
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Update Kalman filter with a measurement
|
|
||||||
* For the Kalman Filter, the measurement function, h(x_{t}) = z_{t}
|
|
||||||
* will be of the form h(x_{t}) = H*x_{t} + v
|
|
||||||
* where H is the observation model/matrix, and v is zero-mean,
|
|
||||||
* Gaussian white noise with covariance R.
|
|
||||||
* Currently, R is restricted to diagonal Gaussians (model parameter)
|
|
||||||
*/
|
|
||||||
State update(const State& p, const Matrix& H, const Vector& z,
|
|
||||||
const SharedDiagonal& model);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Version of update with full covariance
|
|
||||||
* Q is normally derived as G*w*G^T where w models uncertainty of some
|
|
||||||
* physical property, such as velocity or acceleration, and G is derived from physics.
|
|
||||||
* This version allows more realistic models than a diagonal covariance matrix.
|
|
||||||
*/
|
|
||||||
State updateQ(const State& p, const Matrix& H, const Vector& z,
|
|
||||||
const Matrix& Q);
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The Kalman filter state is simply a GaussianDensity
|
||||||
|
*/
|
||||||
|
typedef GaussianDensity::shared_ptr State;
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
const size_t n_; /** dimensionality of state */
|
||||||
|
const Matrix I_; /** identity matrix of size n*n */
|
||||||
|
const Factorization method_; /** algorithm */
|
||||||
|
|
||||||
|
GaussianFactorGraph::Eliminate factorization() const;
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
// Constructor
|
||||||
|
KalmanFilter(size_t n, Factorization method =
|
||||||
|
KALMANFILTER_DEFAULT_FACTORIZATION) :
|
||||||
|
n_(n), I_(eye(n_, n_)), method_(method) {
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create initial state, i.e., prior density at time k=0
|
||||||
|
* In Kalman Filter notation, these are x_{0|0} and P_{0|0}
|
||||||
|
* @param x0 estimate at time 0
|
||||||
|
* @param P0 covariance at time 0, given as a diagonal Gaussian 'model'
|
||||||
|
*/
|
||||||
|
State init(const Vector& x0, const SharedDiagonal& P0);
|
||||||
|
|
||||||
|
/// version of init with a full covariance matrix
|
||||||
|
State init(const Vector& x0, const Matrix& P0);
|
||||||
|
|
||||||
|
/// print
|
||||||
|
void print(const std::string& s = "") const;
|
||||||
|
|
||||||
|
/** Return step index k, starts at 0, incremented at each predict. */
|
||||||
|
static Key step(const State& p) {
|
||||||
|
return p->firstFrontalKey();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Predict the state P(x_{t+1}|Z^t)
|
||||||
|
* In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
|
||||||
|
* Details and parameters:
|
||||||
|
* In a linear Kalman Filter, the motion model is f(x_{t}) = F*x_{t} + B*u_{t} + w
|
||||||
|
* where F is the state transition model/matrix, B is the control input model,
|
||||||
|
* and w is zero-mean, Gaussian white noise with covariance Q.
|
||||||
|
*/
|
||||||
|
State predict(const State& p, const Matrix& F, const Matrix& B,
|
||||||
|
const Vector& u, const SharedDiagonal& modelQ);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Version of predict with full covariance
|
||||||
|
* Q is normally derived as G*w*G^T where w models uncertainty of some
|
||||||
|
* physical property, such as velocity or acceleration, and G is derived from physics.
|
||||||
|
* This version allows more realistic models than a diagonal covariance matrix.
|
||||||
|
*/
|
||||||
|
State predictQ(const State& p, const Matrix& F, const Matrix& B,
|
||||||
|
const Vector& u, const Matrix& Q);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Predict the state P(x_{t+1}|Z^t)
|
||||||
|
* In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
|
||||||
|
* After the call, that is the density that can be queried.
|
||||||
|
* Details and parameters:
|
||||||
|
* This version of predict takes GaussianFactor motion model [A0 A1 b]
|
||||||
|
* with an optional noise model.
|
||||||
|
*/
|
||||||
|
State predict2(const State& p, const Matrix& A0, const Matrix& A1,
|
||||||
|
const Vector& b, const SharedDiagonal& model);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Update Kalman filter with a measurement
|
||||||
|
* For the Kalman Filter, the measurement function, h(x_{t}) = z_{t}
|
||||||
|
* will be of the form h(x_{t}) = H*x_{t} + v
|
||||||
|
* where H is the observation model/matrix, and v is zero-mean,
|
||||||
|
* Gaussian white noise with covariance R.
|
||||||
|
* In this version, R is restricted to diagonal Gaussians (model parameter)
|
||||||
|
*/
|
||||||
|
State update(const State& p, const Matrix& H, const Vector& z,
|
||||||
|
const SharedDiagonal& model);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Version of update with full covariance
|
||||||
|
* Q is normally derived as G*w*G^T where w models uncertainty of some
|
||||||
|
* physical property, such as velocity or acceleration, and G is derived from physics.
|
||||||
|
* This version allows more realistic models than a diagonal covariance matrix.
|
||||||
|
*/
|
||||||
|
State updateQ(const State& p, const Matrix& H, const Vector& z,
|
||||||
|
const Matrix& Q);
|
||||||
|
};
|
||||||
|
|
||||||
} // \namespace gtsam
|
} // \namespace gtsam
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
Loading…
Reference in New Issue