Comments with o4-mini

release/4.3a0
Frank Dellaert 2025-04-26 12:24:00 -04:00
parent 9352465494
commit f0e35aecea
1 changed files with 90 additions and 76 deletions

View File

@ -1,6 +1,6 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
@ -10,82 +10,82 @@
* -------------------------------------------------------------------------- */
/**
* @file LIEKF.h
* @brief Base and classes for Left Invariant Extended Kalman Filters
* @file LIEKF.h
* @brief Left-Invariant Extended Kalman Filter (LIEKF) implementation
*
* Templates are implemented for a Left Invariant Extended Kalman Filter
* operating on Lie Groups.
* This file defines the LIEKF class template for performing prediction and
* update steps of an Extended Kalman Filter on states residing in a Lie group.
* The class supports state evolution via group composition and dynamics
* functions, along with measurement updates using tangent-space corrections.
*
*
* @date April 24, 2025
* @author Scott Baker
* @author Matt Kielo
* @author Frank Dellaert
* @date April 24, 2025
* @authors Scott Baker, Matt Kielo, Frank Dellaert
*/
#pragma once
#include <gtsam/base/Matrix.h>
#include <gtsam/base/OptionalJacobian.h>
#include <gtsam/base/Vector.h>
#include <Eigen/Dense>
#include <functional>
namespace gtsam {
/**
* @brief Base class for Left Invariant Extended Kalman Filter (LIEKF)
* @class LIEKF
* @brief Left-Invariant Extended Kalman Filter (LIEKF) on a Lie group G
*
* This class provides the prediction and update structure based on control
* inputs and a measurement function.
* @tparam G Lie group type providing:
* - static int dimension = tangent dimension
* - using TangentVector = Eigen::Vector...
* - using Jacobian = Eigen::Matrix...
* - methods: Expmap(), expmap(), compose(), inverse().AdjointMap()
*
* @tparam G Lie group used for state representation (e.g., Pose2,
* Pose3, NavState)
* @tparam Measurement Type of measurement (e.g. Vector3 for a GPS measurement
* for 3D position)
* This filter maintains a state X in the group G and covariance P in the
* tangent space. Prediction steps are performed via group composition or a
* user-supplied dynamics function. Updates apply a measurement function h
* returning both predicted measurement and its Jacobian H, and correct state
* using the left-invariant error in the tangent space.
*/
template <typename G>
class LIEKF {
public:
static constexpr int n = traits<G>::dimension; ///< Dimension of the state.
/// Tangent-space dimension
static constexpr int n = traits<G>::dimension;
using MatrixN =
Eigen::Matrix<double, n, n>; ///< Typedef for the identity matrix.
/// Square matrix of size n for covariance and Jacobians
using MatrixN = Eigen::Matrix<double, n, n>;
/// Constructor: initialize with state and covariance
LIEKF(const G& X0, const Matrix& P0) : X_(X0), P_(P0) {}
/// @return current state estimate
const G& state() const { return X_; }
/// @return current covariance estimate
const Matrix& covariance() const { return P_; }
/**
* @brief Construct with a measurement function
* @param X0 Initial State
* @param P0 Initial Covariance
* @param h Measurement function
*/
LIEKF(const G& X0, const Matrix& P0) : X(X0), P(P0) {}
/**
* @brief Get current state estimate.
* @return Const reference to the state estimate.
*/
const G& state() const { return X; }
/**
* @brief Get current covariance estimate.
* @return Const reference to the covariance estimate.
*/
const Matrix& covariance() const { return P; }
/**
* @brief Prediction stage with a Lie group element U.
* @param U Lie group control input
* @param Q Process noise covariance matrix.
* Predict step via group composition:
* X_{k+1} = X_k * U
* P_{k+1} = A P_k A^T + Q
* where A = Ad_{U^{-1}}. i.e., d(X.compose(U))/dX evaluated at X_k.
*
* @param U Lie group increment (e.g., Expmap of control * dt)
* @param Q process noise covariance in tangent space
*/
void predict(const G& U, const Matrix& Q) {
typename G::Jacobian A;
X = X.compose(U, A);
P = A * P * A.transpose() + Q;
X_ = X_.compose(U, A);
P_ = A * P_ * A.transpose() + Q;
}
/**
* @brief Prediction stage with a tangent vector xi and a time interval dt.
* @param u Control vector element
* Predict step via tangent control vector:
* U = Expmap(u * dt)
* @param u tangent control vector
* @param dt Time interval
* @param Q Process noise covariance matrix.
*
@ -97,52 +97,66 @@ class LIEKF {
}
/**
* @brief Prediction stage with a dynamics function that calculates the
* tangent vector xi that *depends on the state*.
* @tparam Control The control input type
* @tparam Dynamics : (G, Control, OptionalJacobian<n,n>) -> TangentVector
* @param f Dynamics function that depends on state and control input
* @param u Control input
* @param dt Time interval
* @param Q Process noise covariance matrix.
* Predict step with state-dependent dynamics:
* xi = f(X, u, F)
* U = Expmap(xi * dt)
* A = Ad_{U^{-1}} * F
*
* @tparam Control control input type
* @tparam Dynamics signature: G f(const G&, const Control&,
* OptionalJacobian<n,n>&)
*
* @param f dynamics functor depending on state and control
* @param u control input
* @param dt time step
* @param Q process noise covariance
*/
template <typename Control, typename Dynamics>
void predict(Dynamics&& f, const Control& u, double dt, const Matrix& Q) {
typename G::Jacobian F;
const typename G::TangentVector xi = f(X, u, F);
auto xi = f(X_, u, F);
G U = G::Expmap(xi * dt);
auto A = U.inverse().AdjointMap() * F; // chain rule for compose and f
X = X.compose(U);
P = A * P * A.transpose() + Q;
auto A = U.inverse().AdjointMap() * F;
X_ = X_.compose(U);
P_ = A * P_ * A.transpose() + Q;
}
/**
* @brief Update stage using a measurement and measurement covariance.
* @tparam Measurement The measurement output type
* @tparam Prediction : (G, OptionalJacobian<m,n>) -> Measurement
* @param z Measurement
* @param R Measurement noise covariance matrix.
* Measurement update:
* z_pred, H = h(X)
* K = P H^T (H P H^T + R)^{-1}
* X <- Expmap(-K (z_pred - z)) * X
* P <- (I - K H) P
*
* @tparam Measurement measurement type (e.g., Vector)
* @tparam Prediction functor signature: Measurement h(const G&,
* OptionalJacobian<m,n>&)
*
* @param h measurement model returning predicted z and Jacobian H
* @param z observed measurement
* @param R measurement noise covariance
*/
template <typename Measurement, typename Prediction>
void update(Prediction&& h, const Measurement& z, const Matrix& R) {
Eigen::Matrix<double, traits<Measurement>::dimension, n> H;
Vector y = h(X, H) - z;
Matrix S = H * P * H.transpose() + R;
Matrix K = P * H.transpose() * S.inverse();
X = X.expmap(-K * y);
P = (I_n - K * H) * P; // move Identity to be a constant.
auto z_pred = h(X_, H);
auto y = z_pred - z;
Matrix S = H * P_ * H.transpose() + R;
Matrix K = P_ * H.transpose() * S.inverse();
X_ = X_.expmap(-K * y);
P_ = (I_n - K * H) * P_;
}
protected:
G X; ///< Current state estimate.
Matrix P; ///< Current covariance estimate.
G X_; ///< group state estimate
Matrix P_; ///< covariance in tangent space
private:
static const MatrixN
I_n; ///< A nxn identity matrix used in the update stage of the LIEKF.
/// Identity matrix of size n
static const MatrixN I_n;
};
/// Create the static identity matrix I_n of size nxn for use in update
// Define static identity I_n
template <typename G>
const typename LIEKF<G>::MatrixN LIEKF<G>::I_n = LIEKF<G>::MatrixN::Identity();