Comments with o4-mini
parent
9352465494
commit
f0e35aecea
|
@ -1,6 +1,6 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
@ -10,82 +10,82 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file LIEKF.h
|
||||
* @brief Base and classes for Left Invariant Extended Kalman Filters
|
||||
* @file LIEKF.h
|
||||
* @brief Left-Invariant Extended Kalman Filter (LIEKF) implementation
|
||||
*
|
||||
* Templates are implemented for a Left Invariant Extended Kalman Filter
|
||||
* operating on Lie Groups.
|
||||
* This file defines the LIEKF class template for performing prediction and
|
||||
* update steps of an Extended Kalman Filter on states residing in a Lie group.
|
||||
* The class supports state evolution via group composition and dynamics
|
||||
* functions, along with measurement updates using tangent-space corrections.
|
||||
*
|
||||
*
|
||||
* @date April 24, 2025
|
||||
* @author Scott Baker
|
||||
* @author Matt Kielo
|
||||
* @author Frank Dellaert
|
||||
* @date April 24, 2025
|
||||
* @authors Scott Baker, Matt Kielo, Frank Dellaert
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/base/OptionalJacobian.h>
|
||||
#include <gtsam/base/Vector.h>
|
||||
|
||||
#include <Eigen/Dense>
|
||||
#include <functional>
|
||||
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief Base class for Left Invariant Extended Kalman Filter (LIEKF)
|
||||
* @class LIEKF
|
||||
* @brief Left-Invariant Extended Kalman Filter (LIEKF) on a Lie group G
|
||||
*
|
||||
* This class provides the prediction and update structure based on control
|
||||
* inputs and a measurement function.
|
||||
* @tparam G Lie group type providing:
|
||||
* - static int dimension = tangent dimension
|
||||
* - using TangentVector = Eigen::Vector...
|
||||
* - using Jacobian = Eigen::Matrix...
|
||||
* - methods: Expmap(), expmap(), compose(), inverse().AdjointMap()
|
||||
*
|
||||
* @tparam G Lie group used for state representation (e.g., Pose2,
|
||||
* Pose3, NavState)
|
||||
* @tparam Measurement Type of measurement (e.g. Vector3 for a GPS measurement
|
||||
* for 3D position)
|
||||
* This filter maintains a state X in the group G and covariance P in the
|
||||
* tangent space. Prediction steps are performed via group composition or a
|
||||
* user-supplied dynamics function. Updates apply a measurement function h
|
||||
* returning both predicted measurement and its Jacobian H, and correct state
|
||||
* using the left-invariant error in the tangent space.
|
||||
*/
|
||||
|
||||
template <typename G>
|
||||
class LIEKF {
|
||||
public:
|
||||
static constexpr int n = traits<G>::dimension; ///< Dimension of the state.
|
||||
/// Tangent-space dimension
|
||||
static constexpr int n = traits<G>::dimension;
|
||||
|
||||
using MatrixN =
|
||||
Eigen::Matrix<double, n, n>; ///< Typedef for the identity matrix.
|
||||
/// Square matrix of size n for covariance and Jacobians
|
||||
using MatrixN = Eigen::Matrix<double, n, n>;
|
||||
|
||||
/// Constructor: initialize with state and covariance
|
||||
LIEKF(const G& X0, const Matrix& P0) : X_(X0), P_(P0) {}
|
||||
|
||||
/// @return current state estimate
|
||||
const G& state() const { return X_; }
|
||||
|
||||
/// @return current covariance estimate
|
||||
const Matrix& covariance() const { return P_; }
|
||||
|
||||
/**
|
||||
* @brief Construct with a measurement function
|
||||
* @param X0 Initial State
|
||||
* @param P0 Initial Covariance
|
||||
* @param h Measurement function
|
||||
*/
|
||||
LIEKF(const G& X0, const Matrix& P0) : X(X0), P(P0) {}
|
||||
|
||||
/**
|
||||
* @brief Get current state estimate.
|
||||
* @return Const reference to the state estimate.
|
||||
*/
|
||||
const G& state() const { return X; }
|
||||
|
||||
/**
|
||||
* @brief Get current covariance estimate.
|
||||
* @return Const reference to the covariance estimate.
|
||||
*/
|
||||
const Matrix& covariance() const { return P; }
|
||||
|
||||
/**
|
||||
* @brief Prediction stage with a Lie group element U.
|
||||
* @param U Lie group control input
|
||||
* @param Q Process noise covariance matrix.
|
||||
* Predict step via group composition:
|
||||
* X_{k+1} = X_k * U
|
||||
* P_{k+1} = A P_k A^T + Q
|
||||
* where A = Ad_{U^{-1}}. i.e., d(X.compose(U))/dX evaluated at X_k.
|
||||
*
|
||||
* @param U Lie group increment (e.g., Expmap of control * dt)
|
||||
* @param Q process noise covariance in tangent space
|
||||
*/
|
||||
void predict(const G& U, const Matrix& Q) {
|
||||
typename G::Jacobian A;
|
||||
X = X.compose(U, A);
|
||||
P = A * P * A.transpose() + Q;
|
||||
X_ = X_.compose(U, A);
|
||||
P_ = A * P_ * A.transpose() + Q;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Prediction stage with a tangent vector xi and a time interval dt.
|
||||
* @param u Control vector element
|
||||
* Predict step via tangent control vector:
|
||||
* U = Expmap(u * dt)
|
||||
* @param u tangent control vector
|
||||
* @param dt Time interval
|
||||
* @param Q Process noise covariance matrix.
|
||||
*
|
||||
|
@ -97,52 +97,66 @@ class LIEKF {
|
|||
}
|
||||
|
||||
/**
|
||||
* @brief Prediction stage with a dynamics function that calculates the
|
||||
* tangent vector xi that *depends on the state*.
|
||||
* @tparam Control The control input type
|
||||
* @tparam Dynamics : (G, Control, OptionalJacobian<n,n>) -> TangentVector
|
||||
* @param f Dynamics function that depends on state and control input
|
||||
* @param u Control input
|
||||
* @param dt Time interval
|
||||
* @param Q Process noise covariance matrix.
|
||||
* Predict step with state-dependent dynamics:
|
||||
* xi = f(X, u, F)
|
||||
* U = Expmap(xi * dt)
|
||||
* A = Ad_{U^{-1}} * F
|
||||
*
|
||||
* @tparam Control control input type
|
||||
* @tparam Dynamics signature: G f(const G&, const Control&,
|
||||
* OptionalJacobian<n,n>&)
|
||||
*
|
||||
* @param f dynamics functor depending on state and control
|
||||
* @param u control input
|
||||
* @param dt time step
|
||||
* @param Q process noise covariance
|
||||
*/
|
||||
template <typename Control, typename Dynamics>
|
||||
void predict(Dynamics&& f, const Control& u, double dt, const Matrix& Q) {
|
||||
typename G::Jacobian F;
|
||||
const typename G::TangentVector xi = f(X, u, F);
|
||||
auto xi = f(X_, u, F);
|
||||
G U = G::Expmap(xi * dt);
|
||||
auto A = U.inverse().AdjointMap() * F; // chain rule for compose and f
|
||||
X = X.compose(U);
|
||||
P = A * P * A.transpose() + Q;
|
||||
auto A = U.inverse().AdjointMap() * F;
|
||||
X_ = X_.compose(U);
|
||||
P_ = A * P_ * A.transpose() + Q;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Update stage using a measurement and measurement covariance.
|
||||
* @tparam Measurement The measurement output type
|
||||
* @tparam Prediction : (G, OptionalJacobian<m,n>) -> Measurement
|
||||
* @param z Measurement
|
||||
* @param R Measurement noise covariance matrix.
|
||||
* Measurement update:
|
||||
* z_pred, H = h(X)
|
||||
* K = P H^T (H P H^T + R)^{-1}
|
||||
* X <- Expmap(-K (z_pred - z)) * X
|
||||
* P <- (I - K H) P
|
||||
*
|
||||
* @tparam Measurement measurement type (e.g., Vector)
|
||||
* @tparam Prediction functor signature: Measurement h(const G&,
|
||||
* OptionalJacobian<m,n>&)
|
||||
*
|
||||
* @param h measurement model returning predicted z and Jacobian H
|
||||
* @param z observed measurement
|
||||
* @param R measurement noise covariance
|
||||
*/
|
||||
template <typename Measurement, typename Prediction>
|
||||
void update(Prediction&& h, const Measurement& z, const Matrix& R) {
|
||||
Eigen::Matrix<double, traits<Measurement>::dimension, n> H;
|
||||
Vector y = h(X, H) - z;
|
||||
Matrix S = H * P * H.transpose() + R;
|
||||
Matrix K = P * H.transpose() * S.inverse();
|
||||
X = X.expmap(-K * y);
|
||||
P = (I_n - K * H) * P; // move Identity to be a constant.
|
||||
auto z_pred = h(X_, H);
|
||||
auto y = z_pred - z;
|
||||
Matrix S = H * P_ * H.transpose() + R;
|
||||
Matrix K = P_ * H.transpose() * S.inverse();
|
||||
X_ = X_.expmap(-K * y);
|
||||
P_ = (I_n - K * H) * P_;
|
||||
}
|
||||
|
||||
protected:
|
||||
G X; ///< Current state estimate.
|
||||
Matrix P; ///< Current covariance estimate.
|
||||
G X_; ///< group state estimate
|
||||
Matrix P_; ///< covariance in tangent space
|
||||
|
||||
private:
|
||||
static const MatrixN
|
||||
I_n; ///< A nxn identity matrix used in the update stage of the LIEKF.
|
||||
/// Identity matrix of size n
|
||||
static const MatrixN I_n;
|
||||
};
|
||||
|
||||
/// Create the static identity matrix I_n of size nxn for use in update
|
||||
// Define static identity I_n
|
||||
template <typename G>
|
||||
const typename LIEKF<G>::MatrixN LIEKF<G>::I_n = LIEKF<G>::MatrixN::Identity();
|
||||
|
||||
|
|
Loading…
Reference in New Issue