Merge branch 'working-hybrid' into model-selection-bayestree
commit
f06777fe7a
|
@ -24,6 +24,7 @@
|
|||
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/Conditional-inst.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -318,8 +319,15 @@ AlgebraicDecisionTree<Key> GaussianMixture::logProbability(
|
|||
AlgebraicDecisionTree<Key> GaussianMixture::errorTree(
|
||||
const VectorValues &continuousValues) const {
|
||||
auto errorFunc = [&](const GaussianConditional::shared_ptr &conditional) {
|
||||
return conditional->error(continuousValues) + //
|
||||
logConstant_ - conditional->logNormalizationConstant();
|
||||
// Check if valid pointer
|
||||
if (conditional) {
|
||||
return conditional->error(continuousValues) + //
|
||||
logConstant_ - conditional->logNormalizationConstant();
|
||||
} else {
|
||||
// If not valid, pointer, it means this conditional was pruned,
|
||||
// so we return maximum error.
|
||||
return std::numeric_limits<double>::max();
|
||||
}
|
||||
};
|
||||
DecisionTree<Key, double> error_tree(conditionals_, errorFunc);
|
||||
return error_tree;
|
||||
|
@ -327,10 +335,33 @@ AlgebraicDecisionTree<Key> GaussianMixture::errorTree(
|
|||
|
||||
/* *******************************************************************************/
|
||||
double GaussianMixture::error(const HybridValues &values) const {
|
||||
// Check if discrete keys in discrete assignment are
|
||||
// present in the GaussianMixture
|
||||
KeyVector dKeys = this->discreteKeys_.indices();
|
||||
bool valid_assignment = false;
|
||||
for (auto &&kv : values.discrete()) {
|
||||
if (std::find(dKeys.begin(), dKeys.end(), kv.first) != dKeys.end()) {
|
||||
valid_assignment = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// The discrete assignment is not valid so we throw an error.
|
||||
if (!valid_assignment) {
|
||||
throw std::runtime_error(
|
||||
"Invalid discrete values in values. Not all discrete keys specified.");
|
||||
}
|
||||
|
||||
// Directly index to get the conditional, no need to build the whole tree.
|
||||
auto conditional = conditionals_(values.discrete());
|
||||
return conditional->error(values.continuous()) + //
|
||||
logConstant_ - conditional->logNormalizationConstant();
|
||||
if (conditional) {
|
||||
return conditional->error(values.continuous()) + //
|
||||
logConstant_ - conditional->logNormalizationConstant();
|
||||
} else {
|
||||
// If not valid, pointer, it means this conditional was pruned,
|
||||
// so we return maximum error.
|
||||
return std::numeric_limits<double>::max();
|
||||
}
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
|
|
|
@ -67,7 +67,7 @@ class GTSAM_EXPORT GaussianMixture
|
|||
double logConstant_; ///< log of the normalization constant.
|
||||
|
||||
/**
|
||||
* @brief Convert a DecisionTree of factors into
|
||||
* @brief Convert a GaussianMixture of conditionals into
|
||||
* a DecisionTree of Gaussian factor graphs.
|
||||
*/
|
||||
GaussianFactorGraphTree asGaussianFactorGraphTree() const;
|
||||
|
|
|
@ -54,7 +54,9 @@ bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {
|
|||
/* *******************************************************************************/
|
||||
void GaussianMixtureFactor::print(const std::string &s,
|
||||
const KeyFormatter &formatter) const {
|
||||
HybridFactor::print(s, formatter);
|
||||
std::cout << (s.empty() ? "" : s + "\n");
|
||||
std::cout << "GaussianMixtureFactor" << std::endl;
|
||||
HybridFactor::print("", formatter);
|
||||
std::cout << "{\n";
|
||||
if (factors_.empty()) {
|
||||
std::cout << " empty" << std::endl;
|
||||
|
@ -117,6 +119,5 @@ double GaussianMixtureFactor::error(const HybridValues &values) const {
|
|||
const sharedFactor gf = factors_(values.discrete());
|
||||
return gf->error(values.continuous());
|
||||
}
|
||||
/* *******************************************************************************/
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -80,8 +80,8 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
|
|||
* @param continuousKeys A vector of keys representing continuous variables.
|
||||
* @param discreteKeys A vector of keys representing discrete variables and
|
||||
* their cardinalities.
|
||||
* @param factors The decision tree of Gaussian factors stored as the mixture
|
||||
* density.
|
||||
* @param factors The decision tree of Gaussian factors stored
|
||||
* as the mixture density.
|
||||
*/
|
||||
GaussianMixtureFactor(const KeyVector &continuousKeys,
|
||||
const DiscreteKeys &discreteKeys,
|
||||
|
@ -107,9 +107,8 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
|
|||
|
||||
bool equals(const HybridFactor &lf, double tol = 1e-9) const override;
|
||||
|
||||
void print(
|
||||
const std::string &s = "GaussianMixtureFactor\n",
|
||||
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
|
||||
void print(const std::string &s = "", const KeyFormatter &formatter =
|
||||
DefaultKeyFormatter) const override;
|
||||
|
||||
/// @}
|
||||
/// @name Standard API
|
||||
|
|
|
@ -220,15 +220,16 @@ GaussianBayesNet HybridBayesNet::choose(
|
|||
/* ************************************************************************* */
|
||||
HybridValues HybridBayesNet::optimize() const {
|
||||
// Collect all the discrete factors to compute MPE
|
||||
DiscreteBayesNet discrete_bn;
|
||||
DiscreteFactorGraph discrete_fg;
|
||||
|
||||
for (auto &&conditional : *this) {
|
||||
if (conditional->isDiscrete()) {
|
||||
discrete_bn.push_back(conditional->asDiscrete());
|
||||
discrete_fg.push_back(conditional->asDiscrete());
|
||||
}
|
||||
}
|
||||
|
||||
// Solve for the MPE
|
||||
DiscreteValues mpe = DiscreteFactorGraph(discrete_bn).optimize();
|
||||
DiscreteValues mpe = discrete_fg.optimize();
|
||||
|
||||
// Given the MPE, compute the optimal continuous values.
|
||||
return HybridValues(optimize(mpe), mpe);
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
* @file HybridFactor.h
|
||||
* @date Mar 11, 2022
|
||||
* @author Fan Jiang
|
||||
* @author Varun Agrawal
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
|
|
@ -242,6 +242,18 @@ discreteElimination(const HybridGaussianFactorGraph &factors,
|
|||
for (auto &f : factors) {
|
||||
if (auto df = dynamic_pointer_cast<DiscreteFactor>(f)) {
|
||||
dfg.push_back(df);
|
||||
} else if (auto gmf = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
|
||||
// Case where we have a GaussianMixtureFactor with no continuous keys.
|
||||
// In this case, compute discrete probabilities.
|
||||
auto probability =
|
||||
[&](const GaussianFactor::shared_ptr &factor) -> double {
|
||||
if (!factor) return 0.0;
|
||||
return exp(-factor->error(VectorValues()));
|
||||
};
|
||||
dfg.emplace_shared<DecisionTreeFactor>(
|
||||
gmf->discreteKeys(),
|
||||
DecisionTree<Key, double>(gmf->factors(), probability));
|
||||
|
||||
} else if (auto orphan = dynamic_pointer_cast<OrphanWrapper>(f)) {
|
||||
// Ignore orphaned clique.
|
||||
// TODO(dellaert): is this correct? If so explain here.
|
||||
|
@ -279,21 +291,37 @@ GaussianFactorGraphTree removeEmpty(const GaussianFactorGraphTree &sum) {
|
|||
using Result = std::pair<std::shared_ptr<GaussianConditional>,
|
||||
GaussianMixtureFactor::sharedFactor>;
|
||||
|
||||
// Integrate the probability mass in the last continuous conditional using
|
||||
// the unnormalized probability q(μ;m) = exp(-error(μ;m)) at the mean.
|
||||
// discrete_probability = exp(-error(μ;m)) * sqrt(det(2π Σ_m))
|
||||
/**
|
||||
* Compute the probability q(μ;m) = exp(-error(μ;m)) * sqrt(det(2π Σ_m)
|
||||
* from the residual error at the mean μ.
|
||||
* The residual error contains no keys, and only
|
||||
* depends on the discrete separator if present.
|
||||
*/
|
||||
static std::shared_ptr<Factor> createDiscreteFactor(
|
||||
const DecisionTree<Key, Result> &eliminationResults,
|
||||
const DiscreteKeys &discreteSeparator) {
|
||||
auto probability = [&](const Result &pair) -> double {
|
||||
auto logProbability = [&](const Result &pair) -> double {
|
||||
const auto &[conditional, factor] = pair;
|
||||
static const VectorValues kEmpty;
|
||||
// If the factor is not null, it has no keys, just contains the residual.
|
||||
if (!factor) return 1.0; // TODO(dellaert): not loving this.
|
||||
return exp(-factor->error(kEmpty)) / conditional->normalizationConstant();
|
||||
|
||||
// Logspace version of:
|
||||
// exp(-factor->error(kEmpty)) / conditional->normalizationConstant();
|
||||
// We take negative of the logNormalizationConstant `log(1/k)`
|
||||
// to get `log(k)`.
|
||||
return -factor->error(kEmpty) + (-conditional->logNormalizationConstant());
|
||||
};
|
||||
|
||||
DecisionTree<Key, double> probabilities(eliminationResults, probability);
|
||||
AlgebraicDecisionTree<Key> logProbabilities(
|
||||
DecisionTree<Key, double>(eliminationResults, logProbability));
|
||||
|
||||
// Perform normalization
|
||||
double max_log = logProbabilities.max();
|
||||
AlgebraicDecisionTree probabilities = DecisionTree<Key, double>(
|
||||
logProbabilities,
|
||||
[&max_log](const double x) { return exp(x - max_log); });
|
||||
probabilities = probabilities.normalize(probabilities.sum());
|
||||
|
||||
return std::make_shared<DecisionTreeFactor>(discreteSeparator, probabilities);
|
||||
}
|
||||
|
|
|
@ -22,9 +22,13 @@
|
|||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/hybrid/GaussianMixture.h>
|
||||
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/nonlinear/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
@ -34,6 +38,7 @@ using namespace gtsam;
|
|||
using noiseModel::Isotropic;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::Z;
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Check iterators of empty mixture.
|
||||
|
@ -56,7 +61,6 @@ TEST(GaussianMixtureFactor, Sum) {
|
|||
auto b = Matrix::Zero(2, 1);
|
||||
Vector2 sigmas;
|
||||
sigmas << 1, 2;
|
||||
auto model = noiseModel::Diagonal::Sigmas(sigmas, true);
|
||||
|
||||
auto f10 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
|
||||
auto f11 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
|
||||
|
@ -106,7 +110,8 @@ TEST(GaussianMixtureFactor, Printing) {
|
|||
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
|
||||
|
||||
std::string expected =
|
||||
R"(Hybrid [x1 x2; 1]{
|
||||
R"(GaussianMixtureFactor
|
||||
Hybrid [x1 x2; 1]{
|
||||
Choice(1)
|
||||
0 Leaf :
|
||||
A[x1] = [
|
||||
|
@ -178,7 +183,8 @@ TEST(GaussianMixtureFactor, Error) {
|
|||
continuousValues.insert(X(2), Vector2(1, 1));
|
||||
|
||||
// error should return a tree of errors, with nodes for each discrete value.
|
||||
AlgebraicDecisionTree<Key> error_tree = mixtureFactor.errorTree(continuousValues);
|
||||
AlgebraicDecisionTree<Key> error_tree =
|
||||
mixtureFactor.errorTree(continuousValues);
|
||||
|
||||
std::vector<DiscreteKey> discrete_keys = {m1};
|
||||
// Error values for regression test
|
||||
|
@ -191,8 +197,422 @@ TEST(GaussianMixtureFactor, Error) {
|
|||
DiscreteValues discreteValues;
|
||||
discreteValues[m1.first] = 1;
|
||||
EXPECT_DOUBLES_EQUAL(
|
||||
4.0, mixtureFactor.error({continuousValues, discreteValues}),
|
||||
1e-9);
|
||||
4.0, mixtureFactor.error({continuousValues, discreteValues}), 1e-9);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Test a simple Gaussian Mixture Model represented as P(m)P(z|m)
|
||||
* where m is a discrete variable and z is a continuous variable.
|
||||
* m is binary and depending on m, we have 2 different means
|
||||
* μ1 and μ2 for the Gaussian distribution around which we sample z.
|
||||
*
|
||||
* The resulting factor graph should eliminate to a Bayes net
|
||||
* which represents a sigmoid function.
|
||||
*/
|
||||
TEST(GaussianMixtureFactor, GaussianMixtureModel) {
|
||||
double mu0 = 1.0, mu1 = 3.0;
|
||||
double sigma = 2.0;
|
||||
auto model = noiseModel::Isotropic::Sigma(1, sigma);
|
||||
|
||||
DiscreteKey m(M(0), 2);
|
||||
Key z = Z(0);
|
||||
|
||||
auto c0 = make_shared<GaussianConditional>(z, Vector1(mu0), I_1x1, model),
|
||||
c1 = make_shared<GaussianConditional>(z, Vector1(mu1), I_1x1, model);
|
||||
|
||||
auto gm = new GaussianMixture({z}, {}, {m}, {c0, c1});
|
||||
auto mixing = new DiscreteConditional(m, "0.5/0.5");
|
||||
|
||||
HybridBayesNet hbn;
|
||||
hbn.emplace_back(gm);
|
||||
hbn.emplace_back(mixing);
|
||||
|
||||
// The result should be a sigmoid.
|
||||
// So should be m = 0.5 at z=3.0 - 1.0=2.0
|
||||
VectorValues given;
|
||||
given.insert(z, Vector1(mu1 - mu0));
|
||||
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
HybridBayesNet expected;
|
||||
expected.emplace_back(new DiscreteConditional(m, "0.5/0.5"));
|
||||
|
||||
EXPECT(assert_equal(expected, *bn));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Test a simple Gaussian Mixture Model represented as P(m)P(z|m)
|
||||
* where m is a discrete variable and z is a continuous variable.
|
||||
* m is binary and depending on m, we have 2 different means
|
||||
* and covariances each for the
|
||||
* Gaussian distribution around which we sample z.
|
||||
*
|
||||
* The resulting factor graph should eliminate to a Bayes net
|
||||
* which represents a sigmoid function leaning towards
|
||||
* the tighter covariance Gaussian.
|
||||
*/
|
||||
TEST(GaussianMixtureFactor, GaussianMixtureModel2) {
|
||||
double mu0 = 1.0, mu1 = 3.0;
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, 8.0);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, 4.0);
|
||||
|
||||
DiscreteKey m(M(0), 2);
|
||||
Key z = Z(0);
|
||||
|
||||
auto c0 = make_shared<GaussianConditional>(z, Vector1(mu0), I_1x1, model0),
|
||||
c1 = make_shared<GaussianConditional>(z, Vector1(mu1), I_1x1, model1);
|
||||
|
||||
auto gm = new GaussianMixture({z}, {}, {m}, {c0, c1});
|
||||
auto mixing = new DiscreteConditional(m, "0.5/0.5");
|
||||
|
||||
HybridBayesNet hbn;
|
||||
hbn.emplace_back(gm);
|
||||
hbn.emplace_back(mixing);
|
||||
|
||||
// The result should be a sigmoid leaning towards model1
|
||||
// since it has the tighter covariance.
|
||||
// So should be m = 0.34/0.66 at z=3.0 - 1.0=2.0
|
||||
VectorValues given;
|
||||
given.insert(z, Vector1(mu1 - mu0));
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
HybridBayesNet expected;
|
||||
expected.emplace_back(
|
||||
new DiscreteConditional(m, "0.338561851224/0.661438148776"));
|
||||
|
||||
EXPECT(assert_equal(expected, *bn));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Test a model P(x0)P(z0|x0)p(x1|m1)p(z1|x1)p(m1).
|
||||
*
|
||||
* p(x1|m1) has different means and same covariance.
|
||||
*
|
||||
* Converting to a factor graph gives us
|
||||
* P(x0)ϕ(x0)P(x1|m1)ϕ(x1)P(m1)
|
||||
*
|
||||
* If we only have a measurement on z0, then
|
||||
* the probability of x1 should be 0.5/0.5.
|
||||
* Getting a measurement on z1 gives use more information.
|
||||
*/
|
||||
TEST(GaussianMixtureFactor, TwoStateModel) {
|
||||
double mu0 = 1.0, mu1 = 3.0;
|
||||
auto model = noiseModel::Isotropic::Sigma(1, 2.0);
|
||||
|
||||
DiscreteKey m1(M(1), 2);
|
||||
Key z0 = Z(0), z1 = Z(1), x0 = X(0), x1 = X(1);
|
||||
|
||||
auto c0 = make_shared<GaussianConditional>(x1, Vector1(mu0), I_1x1, model),
|
||||
c1 = make_shared<GaussianConditional>(x1, Vector1(mu1), I_1x1, model);
|
||||
|
||||
auto p_x0 = new GaussianConditional(x0, Vector1(0.0), I_1x1,
|
||||
noiseModel::Isotropic::Sigma(1, 1.0));
|
||||
auto p_z0x0 = new GaussianConditional(z0, Vector1(0.0), I_1x1, x0, -I_1x1,
|
||||
noiseModel::Isotropic::Sigma(1, 1.0));
|
||||
auto p_x1m1 = new GaussianMixture({x1}, {}, {m1}, {c0, c1});
|
||||
auto p_z1x1 = new GaussianConditional(z1, Vector1(0.0), I_1x1, x1, -I_1x1,
|
||||
noiseModel::Isotropic::Sigma(1, 3.0));
|
||||
auto p_m1 = new DiscreteConditional(m1, "0.5/0.5");
|
||||
|
||||
HybridBayesNet hbn;
|
||||
hbn.emplace_back(p_x0);
|
||||
hbn.emplace_back(p_z0x0);
|
||||
hbn.emplace_back(p_x1m1);
|
||||
hbn.emplace_back(p_m1);
|
||||
|
||||
VectorValues given;
|
||||
given.insert(z0, Vector1(0.5));
|
||||
|
||||
{
|
||||
// Start with no measurement on x1, only on x0
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Since no measurement on x1, we hedge our bets
|
||||
DiscreteConditional expected(m1, "0.5/0.5");
|
||||
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete())));
|
||||
}
|
||||
|
||||
{
|
||||
// Now we add a measurement z1 on x1
|
||||
hbn.emplace_back(p_z1x1);
|
||||
|
||||
given.insert(z1, Vector1(2.2));
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Since we have a measurement on z2, we get a definite result
|
||||
DiscreteConditional expected(m1, "0.4923083/0.5076917");
|
||||
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 1e-6));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Test a model P(x0)P(z0|x0)p(x1|m1)p(z1|x1)p(m1).
|
||||
*
|
||||
* p(x1|m1) has different means and different covariances.
|
||||
*
|
||||
* Converting to a factor graph gives us
|
||||
* P(x0)ϕ(x0)P(x1|m1)ϕ(x1)P(m1)
|
||||
*
|
||||
* If we only have a measurement on z0, then
|
||||
* the probability of x1 should be the ratio of covariances.
|
||||
* Getting a measurement on z1 gives use more information.
|
||||
*/
|
||||
TEST(GaussianMixtureFactor, TwoStateModel2) {
|
||||
double mu0 = 1.0, mu1 = 3.0;
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, 6.0);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, 4.0);
|
||||
|
||||
DiscreteKey m1(M(1), 2);
|
||||
Key z0 = Z(0), z1 = Z(1), x0 = X(0), x1 = X(1);
|
||||
|
||||
auto c0 = make_shared<GaussianConditional>(x1, Vector1(mu0), I_1x1, model0),
|
||||
c1 = make_shared<GaussianConditional>(x1, Vector1(mu1), I_1x1, model1);
|
||||
|
||||
auto p_x0 = new GaussianConditional(x0, Vector1(0.0), I_1x1,
|
||||
noiseModel::Isotropic::Sigma(1, 1.0));
|
||||
auto p_z0x0 = new GaussianConditional(z0, Vector1(0.0), I_1x1, x0, -I_1x1,
|
||||
noiseModel::Isotropic::Sigma(1, 1.0));
|
||||
auto p_x1m1 = new GaussianMixture({x1}, {}, {m1}, {c0, c1});
|
||||
auto p_z1x1 = new GaussianConditional(z1, Vector1(0.0), I_1x1, x1, -I_1x1,
|
||||
noiseModel::Isotropic::Sigma(1, 3.0));
|
||||
auto p_m1 = new DiscreteConditional(m1, "0.5/0.5");
|
||||
|
||||
HybridBayesNet hbn;
|
||||
hbn.emplace_back(p_x0);
|
||||
hbn.emplace_back(p_z0x0);
|
||||
hbn.emplace_back(p_x1m1);
|
||||
hbn.emplace_back(p_m1);
|
||||
|
||||
VectorValues given;
|
||||
given.insert(z0, Vector1(0.5));
|
||||
|
||||
{
|
||||
// Start with no measurement on x1, only on x0
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Since no measurement on x1, we get the ratio of covariances.
|
||||
DiscreteConditional expected(m1, "0.6/0.4");
|
||||
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete())));
|
||||
}
|
||||
|
||||
{
|
||||
// Now we add a measurement z1 on x1
|
||||
hbn.emplace_back(p_z1x1);
|
||||
|
||||
given.insert(z1, Vector1(2.2));
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Since we have a measurement on z2, we get a definite result
|
||||
DiscreteConditional expected(m1, "0.52706646/0.47293354");
|
||||
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 1e-6));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Helper function to specify a Hybrid Bayes Net
|
||||
* {P(X1) P(Z1 | X1, X2, M1)} and convert it to a Hybrid Factor Graph
|
||||
* {P(X1)L(X1, X2, M1; Z1)} by converting to likelihoods given Z1.
|
||||
*
|
||||
* We can specify either different means or different sigmas,
|
||||
* or both for each hybrid factor component.
|
||||
*
|
||||
* @param values Initial values for linearization.
|
||||
* @param means The mean values for the conditional components.
|
||||
* @param sigmas Noise model sigma values (standard deviation).
|
||||
* @param m1 The discrete mode key.
|
||||
* @param z1 The measurement value.
|
||||
* @return HybridGaussianFactorGraph
|
||||
*/
|
||||
HybridGaussianFactorGraph GetFactorGraphFromBayesNet(
|
||||
const gtsam::Values &values, const std::vector<double> &means,
|
||||
const std::vector<double> &sigmas, DiscreteKey &m1, double z1 = 0.0) {
|
||||
// Noise models
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, sigmas[0]);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, sigmas[1]);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
|
||||
// GaussianMixtureFactor component factors
|
||||
auto f0 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), means[0], model0);
|
||||
auto f1 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), means[1], model1);
|
||||
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
||||
|
||||
/// Get terms for each p^m(z1 | x1, x2)
|
||||
Matrix H0_1, H0_2, H1_1, H1_2;
|
||||
double x1 = values.at<double>(X(1)), x2 = values.at<double>(X(2));
|
||||
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H0_1 /*Sp1*/},
|
||||
{X(2), H0_2 /*Tp2*/}};
|
||||
|
||||
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H1_1 /*Sp1*/},
|
||||
{X(2), H1_2 /*Tp2*/}};
|
||||
// Create conditional P(Z1 | X1, X2, M1)
|
||||
auto gm = new gtsam::GaussianMixture(
|
||||
{Z(1)}, {X(1), X(2)}, {m1},
|
||||
{std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
|
||||
std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)});
|
||||
gtsam::HybridBayesNet bn;
|
||||
bn.emplace_back(gm);
|
||||
// bn.print();
|
||||
|
||||
// Create FG via toFactorGraph
|
||||
gtsam::VectorValues measurements;
|
||||
measurements.insert(Z(1), gtsam::I_1x1 * z1); // Set Z1 = 0
|
||||
HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
|
||||
|
||||
// Linearized prior factor on X1
|
||||
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
|
||||
mixture_fg.push_back(prior);
|
||||
|
||||
return mixture_fg;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief Test components with differing means.
|
||||
*
|
||||
* We specify a hybrid Bayes network P(Z | X, M) =p(X1)p(Z1 | X1, X2, M1),
|
||||
* which is then converted to a factor graph by specifying Z1.
|
||||
* This is a different case since now we have a hybrid factor
|
||||
* with 2 continuous variables ϕ(x1, x2, m1).
|
||||
* p(Z1 | X1, X2, M1) has 2 factors each for the binary
|
||||
* mode m1, with only the means being different.
|
||||
*/
|
||||
TEST(GaussianMixtureFactor, DifferentMeans) {
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
Values values;
|
||||
double x1 = 0.0, x2 = 1.75;
|
||||
values.insert(X(1), x1);
|
||||
values.insert(X(2), x2);
|
||||
|
||||
// Different means, same sigma
|
||||
std::vector<double> means{0.0, 2.0}, sigmas{1e-0, 1e-0};
|
||||
|
||||
HybridGaussianFactorGraph hfg =
|
||||
GetFactorGraphFromBayesNet(values, means, sigmas, m1, 0.0);
|
||||
|
||||
{
|
||||
// With no measurement on X2, each mode should be equally likely
|
||||
auto bn = hfg.eliminateSequential();
|
||||
HybridValues actual = bn->optimize();
|
||||
|
||||
HybridValues expected(
|
||||
VectorValues{{X(1), Vector1(0.0)}, {X(2), Vector1(-1.75)}},
|
||||
DiscreteValues{{M(1), 0}});
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
{
|
||||
DiscreteValues dv{{M(1), 0}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.69314718056, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 1}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.69314718056, error, 1e-9);
|
||||
}
|
||||
}
|
||||
{
|
||||
// If we add a measurement on X2, we have more information to work with.
|
||||
// Add a measurement on X2
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
GaussianConditional meas_z2(Z(2), Vector1(2.0), I_1x1, X(2), I_1x1,
|
||||
prior_noise);
|
||||
auto prior_x2 = meas_z2.likelihood(Vector1(x2));
|
||||
|
||||
hfg.push_back(prior_x2);
|
||||
|
||||
auto bn = hfg.eliminateSequential();
|
||||
HybridValues actual = bn->optimize();
|
||||
|
||||
HybridValues expected(
|
||||
VectorValues{{X(1), Vector1(0.0)}, {X(2), Vector1(0.25)}},
|
||||
DiscreteValues{{M(1), 1}});
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
{
|
||||
DiscreteValues dv{{M(1), 0}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(2.12692448787, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 1}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.126928487854, error, 1e-9);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief Test components with differing covariances
|
||||
* but with a Bayes net P(Z|X, M) converted to a FG.
|
||||
* Same as the DifferentMeans example but in this case,
|
||||
* we keep the means the same and vary the covariances.
|
||||
*/
|
||||
TEST(GaussianMixtureFactor, DifferentCovariances) {
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
Values values;
|
||||
double x1 = 1.0, x2 = 1.0;
|
||||
values.insert(X(1), x1);
|
||||
values.insert(X(2), x2);
|
||||
|
||||
std::vector<double> means{0.0, 0.0}, sigmas{1e2, 1e-2};
|
||||
HybridGaussianFactorGraph mixture_fg =
|
||||
GetFactorGraphFromBayesNet(values, means, sigmas, m1);
|
||||
|
||||
auto hbn = mixture_fg.eliminateSequential();
|
||||
|
||||
VectorValues cv;
|
||||
cv.insert(X(1), Vector1(0.0));
|
||||
cv.insert(X(2), Vector1(0.0));
|
||||
|
||||
// Check that the error values at the MLE point μ.
|
||||
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
|
||||
|
||||
DiscreteValues dv0{{M(1), 0}};
|
||||
DiscreteValues dv1{{M(1), 1}};
|
||||
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(9.90348755254, errorTree(dv0), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
|
||||
|
||||
DiscreteConditional expected_m1(m1, "0.5/0.5");
|
||||
DiscreteConditional actual_m1 = *(hbn->at(2)->asDiscrete());
|
||||
|
||||
EXPECT(assert_equal(expected_m1, actual_m1));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -510,6 +510,7 @@ factor 0:
|
|||
b = [ -10 ]
|
||||
No noise model
|
||||
factor 1:
|
||||
GaussianMixtureFactor
|
||||
Hybrid [x0 x1; m0]{
|
||||
Choice(m0)
|
||||
0 Leaf :
|
||||
|
@ -534,6 +535,7 @@ Hybrid [x0 x1; m0]{
|
|||
|
||||
}
|
||||
factor 2:
|
||||
GaussianMixtureFactor
|
||||
Hybrid [x1 x2; m1]{
|
||||
Choice(m1)
|
||||
0 Leaf :
|
||||
|
|
|
@ -18,6 +18,9 @@
|
|||
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||
#include <gtsam/hybrid/MixtureFactor.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
@ -115,6 +118,156 @@ TEST(MixtureFactor, Dim) {
|
|||
EXPECT_LONGS_EQUAL(1, mixtureFactor.dim());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Test components with differing means
|
||||
TEST(MixtureFactor, DifferentMeans) {
|
||||
DiscreteKey m1(M(1), 2), m2(M(2), 2);
|
||||
|
||||
Values values;
|
||||
double x1 = 0.0, x2 = 1.75, x3 = 2.60;
|
||||
values.insert(X(1), x1);
|
||||
values.insert(X(2), x2);
|
||||
values.insert(X(3), x3);
|
||||
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, 1e-0);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-0);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-0);
|
||||
|
||||
auto f0 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 0.0, model0);
|
||||
auto f1 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 2.0, model1);
|
||||
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
||||
|
||||
MixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
|
||||
HybridNonlinearFactorGraph hnfg;
|
||||
hnfg.push_back(mixtureFactor);
|
||||
|
||||
f0 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 0.0, model0);
|
||||
f1 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 2.0, model1);
|
||||
std::vector<NonlinearFactor::shared_ptr> factors23{f0, f1};
|
||||
hnfg.push_back(MixtureFactor({X(2), X(3)}, {m2}, factors23));
|
||||
|
||||
auto prior = PriorFactor<double>(X(1), x1, prior_noise);
|
||||
hnfg.push_back(prior);
|
||||
|
||||
hnfg.emplace_shared<PriorFactor<double>>(X(2), 2.0, prior_noise);
|
||||
|
||||
auto hgfg = hnfg.linearize(values);
|
||||
auto bn = hgfg->eliminateSequential();
|
||||
HybridValues actual = bn->optimize();
|
||||
|
||||
HybridValues expected(
|
||||
VectorValues{
|
||||
{X(1), Vector1(0.0)}, {X(2), Vector1(0.25)}, {X(3), Vector1(-0.6)}},
|
||||
DiscreteValues{{M(1), 1}, {M(2), 0}});
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
{
|
||||
DiscreteValues dv{{M(1), 0}, {M(2), 0}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 0}, {M(2), 1}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 1}, {M(2), 0}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 1}, {M(2), 1}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Test components with differing covariances
|
||||
TEST(MixtureFactor, DifferentCovariances) {
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
Values values;
|
||||
double x1 = 1.0, x2 = 1.0;
|
||||
values.insert(X(1), x1);
|
||||
values.insert(X(2), x2);
|
||||
|
||||
double between = 0.0;
|
||||
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
|
||||
auto f0 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
|
||||
auto f1 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
|
||||
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
||||
|
||||
// Create via toFactorGraph
|
||||
using symbol_shorthand::Z;
|
||||
Matrix H0_1, H0_2, H1_1, H1_2;
|
||||
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H0_1 /*Sp1*/},
|
||||
{X(2), H0_2 /*Tp2*/}};
|
||||
|
||||
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H1_1 /*Sp1*/},
|
||||
{X(2), H1_2 /*Tp2*/}};
|
||||
auto gm = new gtsam::GaussianMixture(
|
||||
{Z(1)}, {X(1), X(2)}, {m1},
|
||||
{std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
|
||||
std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)});
|
||||
gtsam::HybridBayesNet bn;
|
||||
bn.emplace_back(gm);
|
||||
|
||||
gtsam::VectorValues measurements;
|
||||
measurements.insert(Z(1), gtsam::Z_1x1);
|
||||
// Create FG with single GaussianMixtureFactor
|
||||
HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
|
||||
|
||||
// Linearized prior factor on X1
|
||||
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
|
||||
mixture_fg.push_back(prior);
|
||||
|
||||
auto hbn = mixture_fg.eliminateSequential();
|
||||
|
||||
VectorValues cv;
|
||||
cv.insert(X(1), Vector1(0.0));
|
||||
cv.insert(X(2), Vector1(0.0));
|
||||
// P(m1) = [0.5, 0.5], so we should pick 0
|
||||
DiscreteValues dv;
|
||||
dv.insert({M(1), 0});
|
||||
HybridValues expected_values(cv, dv);
|
||||
|
||||
HybridValues actual_values = hbn->optimize();
|
||||
EXPECT(assert_equal(expected_values, actual_values));
|
||||
|
||||
// Check that we get different error values at the MLE point μ.
|
||||
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
|
||||
|
||||
HybridValues hv0(cv, DiscreteValues{{M(1), 0}});
|
||||
HybridValues hv1(cv, DiscreteValues{{M(1), 1}});
|
||||
|
||||
AlgebraicDecisionTree<Key> expectedErrorTree(m1, 9.90348755254,
|
||||
0.69314718056);
|
||||
EXPECT(assert_equal(expectedErrorTree, errorTree));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
@ -263,11 +263,6 @@ namespace gtsam {
|
|||
/** equals required by Testable for unit testing */
|
||||
bool equals(const VectorValues& x, double tol = 1e-9) const;
|
||||
|
||||
/// Check equality.
|
||||
friend bool operator==(const VectorValues& lhs, const VectorValues& rhs) {
|
||||
return lhs.equals(rhs);
|
||||
}
|
||||
|
||||
/// @{
|
||||
/// @name Advanced Interface
|
||||
/// @{
|
||||
|
|
Loading…
Reference in New Issue