Initialize
parent
29416436eb
commit
f054a00457
|
@ -32,26 +32,38 @@ struct ExpmapImpl {
|
|||
const double theta2;
|
||||
Matrix3 W;
|
||||
bool nearZero;
|
||||
double theta, s1, s2, c_1;
|
||||
double theta, sin_over_theta, one_minus_cos;
|
||||
|
||||
// omega: element of Lie algebra so(3): W = omega^, normalized by normx
|
||||
ExpmapImpl(const Vector3& omega) : omega(omega), theta2(omega.dot(omega)) {
|
||||
void Initialize() {
|
||||
const double wx = omega.x(), wy = omega.y(), wz = omega.z();
|
||||
W << 0.0, -wz, +wy, +wz, 0.0, -wx, -wy, +wx, 0.0; // Skew[omega]
|
||||
nearZero = (theta2 <= std::numeric_limits<double>::epsilon());
|
||||
if (!nearZero) {
|
||||
theta = std::sqrt(theta2); // rotation angle
|
||||
s1 = std::sin(theta) / theta;
|
||||
s2 = std::sin(theta / 2.0);
|
||||
c_1 = 2.0 * s2 * s2; // numerically better behaved than [1 - cos(theta)]
|
||||
sin_over_theta = std::sin(theta) / theta;
|
||||
const double s2 = std::sin(theta / 2.0);
|
||||
one_minus_cos =
|
||||
2.0 * s2 * s2; // numerically better behaved than [1 - cos(theta)]
|
||||
}
|
||||
}
|
||||
|
||||
// Constructor with element of Lie algebra so(3): W = omega^, normalized by
|
||||
// normx
|
||||
ExpmapImpl(const Vector3& omega) : omega(omega), theta2(omega.dot(omega)) {
|
||||
Initialize();
|
||||
}
|
||||
|
||||
// Constructor with axis-angle
|
||||
ExpmapImpl(const Vector3& axis, double theta)
|
||||
: omega(axis * theta), theta2(theta * theta) {
|
||||
Initialize();
|
||||
}
|
||||
|
||||
SO3 operator()() const {
|
||||
if (nearZero)
|
||||
return I_3x3 + W;
|
||||
else
|
||||
return I_3x3 + s1 * W + c_1 * W * W / theta2;
|
||||
return I_3x3 + sin_over_theta * W + one_minus_cos * W * W / theta2;
|
||||
}
|
||||
|
||||
// NOTE(luca): Right Jacobian for Exponential map in SO(3) - equation
|
||||
|
@ -64,8 +76,8 @@ struct ExpmapImpl {
|
|||
if (nearZero) {
|
||||
return I_3x3 - 0.5 * W;
|
||||
} else {
|
||||
const double a = c_1 / theta2;
|
||||
const double b = (1.0 - s1) / theta2;
|
||||
const double a = one_minus_cos / theta2;
|
||||
const double b = (1.0 - sin_over_theta) / theta2;
|
||||
return I_3x3 - a * W + b * W * W;
|
||||
}
|
||||
}
|
||||
|
@ -78,15 +90,16 @@ struct ExpmapImpl {
|
|||
if (H2) *H2 = I_3x3;
|
||||
return v;
|
||||
} else {
|
||||
const double a = c_1 / theta2;
|
||||
const double b = (1.0 - s1) / theta2;
|
||||
const double a = one_minus_cos / theta2;
|
||||
const double b = (1.0 - sin_over_theta) / theta2;
|
||||
Matrix3 dexp = I_3x3 - a * W + b * W * W;
|
||||
if (H1) {
|
||||
const Vector3 Wv = omega.cross(v);
|
||||
const Vector3 WWv = omega.cross(Wv);
|
||||
const Matrix3 T = skewSymmetric(v);
|
||||
const double Da = (s1 - 2.0 * a) / theta2;
|
||||
const double Db = (3.0 * s1 - std::cos(theta) - 2.0) / theta2 / theta2;
|
||||
const double Da = (sin_over_theta - 2.0 * a) / theta2;
|
||||
const double Db =
|
||||
(3.0 * sin_over_theta - std::cos(theta) - 2.0) / theta2 / theta2;
|
||||
*H1 = (-Da * Wv + Db * WWv) * omega.transpose() + a * T -
|
||||
b * skewSymmetric(Wv) - b * W * T;
|
||||
}
|
||||
|
@ -97,7 +110,7 @@ struct ExpmapImpl {
|
|||
};
|
||||
|
||||
SO3 SO3::AxisAngle(const Vector3& axis, double theta) {
|
||||
return ExpmapImpl(axis*theta)();
|
||||
return ExpmapImpl(axis, theta)();
|
||||
}
|
||||
|
||||
SO3 SO3::Expmap(const Vector3& omega, ChartJacobian H) {
|
||||
|
@ -127,7 +140,7 @@ Vector3 SO3::Logmap(const SO3& R, ChartJacobian H) {
|
|||
const double& R31 = R(2, 0), R32 = R(2, 1), R33 = R(2, 2);
|
||||
|
||||
// Get trace(R)
|
||||
double tr = R.trace();
|
||||
const double tr = R.trace();
|
||||
|
||||
Vector3 omega;
|
||||
|
||||
|
@ -143,7 +156,7 @@ Vector3 SO3::Logmap(const SO3& R, ChartJacobian H) {
|
|||
omega = (M_PI / sqrt(2.0 + 2.0 * R11)) * Vector3(1.0 + R11, R21, R31);
|
||||
} else {
|
||||
double magnitude;
|
||||
double tr_3 = tr - 3.0; // always negative
|
||||
const double tr_3 = tr - 3.0; // always negative
|
||||
if (tr_3 < -1e-7) {
|
||||
double theta = acos((tr - 1.0) / 2.0);
|
||||
magnitude = theta / (2.0 * sin(theta));
|
||||
|
@ -167,14 +180,6 @@ Matrix3 SO3::LogmapDerivative(const Vector3& omega) {
|
|||
double theta2 = omega.dot(omega);
|
||||
if (theta2 <= std::numeric_limits<double>::epsilon()) return I_3x3;
|
||||
double theta = std::sqrt(theta2); // rotation angle
|
||||
#ifdef DUY_VERSION
|
||||
/// Follow Iserles05an, B11, pg 147, with a sign change in the second term (left version)
|
||||
Matrix3 X = skewSymmetric(omega);
|
||||
Matrix3 X2 = X*X;
|
||||
double vi = theta/2.0;
|
||||
double s2 = (theta*tan(M_PI_2-vi) - 2)/(2*theta*theta);
|
||||
return I_3x3 + 0.5*X - s2*X2;
|
||||
#else // Luca's version
|
||||
/** Right Jacobian for Log map in SO(3) - equation (10.86) and following equations in
|
||||
* G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
|
||||
* logmap( Rhat * expmap(omega) ) \approx logmap( Rhat ) + Jrinv * omega
|
||||
|
@ -182,11 +187,10 @@ Matrix3 SO3::LogmapDerivative(const Vector3& omega) {
|
|||
* This maps a perturbation on the manifold (expmap(omega))
|
||||
* to a perturbation in the tangent space (Jrinv * omega)
|
||||
*/
|
||||
const Matrix3 X = skewSymmetric(omega); // element of Lie algebra so(3): X = omega^
|
||||
return I_3x3 + 0.5 * X
|
||||
+ (1 / (theta * theta) - (1 + cos(theta)) / (2 * theta * sin(theta))) * X
|
||||
* X;
|
||||
#endif
|
||||
const Matrix3 W = skewSymmetric(omega); // element of Lie algebra so(3): W = omega^
|
||||
return I_3x3 + 0.5 * W +
|
||||
(1 / (theta * theta) - (1 + cos(theta)) / (2 * theta * sin(theta))) *
|
||||
W * W;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue