Initialize

release/4.3a0
Frank Dellaert 2016-01-31 23:39:42 -08:00
parent 29416436eb
commit f054a00457
1 changed files with 33 additions and 29 deletions

View File

@ -32,26 +32,38 @@ struct ExpmapImpl {
const double theta2; const double theta2;
Matrix3 W; Matrix3 W;
bool nearZero; bool nearZero;
double theta, s1, s2, c_1; double theta, sin_over_theta, one_minus_cos;
// omega: element of Lie algebra so(3): W = omega^, normalized by normx void Initialize() {
ExpmapImpl(const Vector3& omega) : omega(omega), theta2(omega.dot(omega)) {
const double wx = omega.x(), wy = omega.y(), wz = omega.z(); const double wx = omega.x(), wy = omega.y(), wz = omega.z();
W << 0.0, -wz, +wy, +wz, 0.0, -wx, -wy, +wx, 0.0; // Skew[omega] W << 0.0, -wz, +wy, +wz, 0.0, -wx, -wy, +wx, 0.0; // Skew[omega]
nearZero = (theta2 <= std::numeric_limits<double>::epsilon()); nearZero = (theta2 <= std::numeric_limits<double>::epsilon());
if (!nearZero) { if (!nearZero) {
theta = std::sqrt(theta2); // rotation angle theta = std::sqrt(theta2); // rotation angle
s1 = std::sin(theta) / theta; sin_over_theta = std::sin(theta) / theta;
s2 = std::sin(theta / 2.0); const double s2 = std::sin(theta / 2.0);
c_1 = 2.0 * s2 * s2; // numerically better behaved than [1 - cos(theta)] one_minus_cos =
2.0 * s2 * s2; // numerically better behaved than [1 - cos(theta)]
} }
} }
// Constructor with element of Lie algebra so(3): W = omega^, normalized by
// normx
ExpmapImpl(const Vector3& omega) : omega(omega), theta2(omega.dot(omega)) {
Initialize();
}
// Constructor with axis-angle
ExpmapImpl(const Vector3& axis, double theta)
: omega(axis * theta), theta2(theta * theta) {
Initialize();
}
SO3 operator()() const { SO3 operator()() const {
if (nearZero) if (nearZero)
return I_3x3 + W; return I_3x3 + W;
else else
return I_3x3 + s1 * W + c_1 * W * W / theta2; return I_3x3 + sin_over_theta * W + one_minus_cos * W * W / theta2;
} }
// NOTE(luca): Right Jacobian for Exponential map in SO(3) - equation // NOTE(luca): Right Jacobian for Exponential map in SO(3) - equation
@ -64,8 +76,8 @@ struct ExpmapImpl {
if (nearZero) { if (nearZero) {
return I_3x3 - 0.5 * W; return I_3x3 - 0.5 * W;
} else { } else {
const double a = c_1 / theta2; const double a = one_minus_cos / theta2;
const double b = (1.0 - s1) / theta2; const double b = (1.0 - sin_over_theta) / theta2;
return I_3x3 - a * W + b * W * W; return I_3x3 - a * W + b * W * W;
} }
} }
@ -78,15 +90,16 @@ struct ExpmapImpl {
if (H2) *H2 = I_3x3; if (H2) *H2 = I_3x3;
return v; return v;
} else { } else {
const double a = c_1 / theta2; const double a = one_minus_cos / theta2;
const double b = (1.0 - s1) / theta2; const double b = (1.0 - sin_over_theta) / theta2;
Matrix3 dexp = I_3x3 - a * W + b * W * W; Matrix3 dexp = I_3x3 - a * W + b * W * W;
if (H1) { if (H1) {
const Vector3 Wv = omega.cross(v); const Vector3 Wv = omega.cross(v);
const Vector3 WWv = omega.cross(Wv); const Vector3 WWv = omega.cross(Wv);
const Matrix3 T = skewSymmetric(v); const Matrix3 T = skewSymmetric(v);
const double Da = (s1 - 2.0 * a) / theta2; const double Da = (sin_over_theta - 2.0 * a) / theta2;
const double Db = (3.0 * s1 - std::cos(theta) - 2.0) / theta2 / theta2; const double Db =
(3.0 * sin_over_theta - std::cos(theta) - 2.0) / theta2 / theta2;
*H1 = (-Da * Wv + Db * WWv) * omega.transpose() + a * T - *H1 = (-Da * Wv + Db * WWv) * omega.transpose() + a * T -
b * skewSymmetric(Wv) - b * W * T; b * skewSymmetric(Wv) - b * W * T;
} }
@ -97,7 +110,7 @@ struct ExpmapImpl {
}; };
SO3 SO3::AxisAngle(const Vector3& axis, double theta) { SO3 SO3::AxisAngle(const Vector3& axis, double theta) {
return ExpmapImpl(axis*theta)(); return ExpmapImpl(axis, theta)();
} }
SO3 SO3::Expmap(const Vector3& omega, ChartJacobian H) { SO3 SO3::Expmap(const Vector3& omega, ChartJacobian H) {
@ -127,7 +140,7 @@ Vector3 SO3::Logmap(const SO3& R, ChartJacobian H) {
const double& R31 = R(2, 0), R32 = R(2, 1), R33 = R(2, 2); const double& R31 = R(2, 0), R32 = R(2, 1), R33 = R(2, 2);
// Get trace(R) // Get trace(R)
double tr = R.trace(); const double tr = R.trace();
Vector3 omega; Vector3 omega;
@ -143,7 +156,7 @@ Vector3 SO3::Logmap(const SO3& R, ChartJacobian H) {
omega = (M_PI / sqrt(2.0 + 2.0 * R11)) * Vector3(1.0 + R11, R21, R31); omega = (M_PI / sqrt(2.0 + 2.0 * R11)) * Vector3(1.0 + R11, R21, R31);
} else { } else {
double magnitude; double magnitude;
double tr_3 = tr - 3.0; // always negative const double tr_3 = tr - 3.0; // always negative
if (tr_3 < -1e-7) { if (tr_3 < -1e-7) {
double theta = acos((tr - 1.0) / 2.0); double theta = acos((tr - 1.0) / 2.0);
magnitude = theta / (2.0 * sin(theta)); magnitude = theta / (2.0 * sin(theta));
@ -167,14 +180,6 @@ Matrix3 SO3::LogmapDerivative(const Vector3& omega) {
double theta2 = omega.dot(omega); double theta2 = omega.dot(omega);
if (theta2 <= std::numeric_limits<double>::epsilon()) return I_3x3; if (theta2 <= std::numeric_limits<double>::epsilon()) return I_3x3;
double theta = std::sqrt(theta2); // rotation angle double theta = std::sqrt(theta2); // rotation angle
#ifdef DUY_VERSION
/// Follow Iserles05an, B11, pg 147, with a sign change in the second term (left version)
Matrix3 X = skewSymmetric(omega);
Matrix3 X2 = X*X;
double vi = theta/2.0;
double s2 = (theta*tan(M_PI_2-vi) - 2)/(2*theta*theta);
return I_3x3 + 0.5*X - s2*X2;
#else // Luca's version
/** Right Jacobian for Log map in SO(3) - equation (10.86) and following equations in /** Right Jacobian for Log map in SO(3) - equation (10.86) and following equations in
* G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008. * G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* logmap( Rhat * expmap(omega) ) \approx logmap( Rhat ) + Jrinv * omega * logmap( Rhat * expmap(omega) ) \approx logmap( Rhat ) + Jrinv * omega
@ -182,11 +187,10 @@ Matrix3 SO3::LogmapDerivative(const Vector3& omega) {
* This maps a perturbation on the manifold (expmap(omega)) * This maps a perturbation on the manifold (expmap(omega))
* to a perturbation in the tangent space (Jrinv * omega) * to a perturbation in the tangent space (Jrinv * omega)
*/ */
const Matrix3 X = skewSymmetric(omega); // element of Lie algebra so(3): X = omega^ const Matrix3 W = skewSymmetric(omega); // element of Lie algebra so(3): W = omega^
return I_3x3 + 0.5 * X return I_3x3 + 0.5 * W +
+ (1 / (theta * theta) - (1 + cos(theta)) / (2 * theta * sin(theta))) * X (1 / (theta * theta) - (1 + cos(theta)) / (2 * theta * sin(theta))) *
* X; W * W;
#endif
} }
/* ************************************************************************* */ /* ************************************************************************* */