Fixed print_ -> print

release/4.3a0
Frank Dellaert 2022-01-31 18:30:19 -05:00
parent 7adc9898ad
commit f04d8125ef
3 changed files with 6 additions and 8 deletions

View File

@ -31,7 +31,7 @@ def main():
- A measurement model with the correct dimensionality for the factor
"""
prior = gtsam.Rot2.fromAngle(np.deg2rad(30))
prior.print_('goal angle')
prior.print('goal angle')
model = gtsam.noiseModel.Isotropic.Sigma(dim=1, sigma=np.deg2rad(1))
key = X(1)
factor = gtsam.PriorFactorRot2(key, prior, model)
@ -48,7 +48,7 @@ def main():
"""
graph = gtsam.NonlinearFactorGraph()
graph.push_back(factor)
graph.print_('full graph')
graph.print('full graph')
"""
Step 3: Create an initial estimate
@ -65,7 +65,7 @@ def main():
"""
initial = gtsam.Values()
initial.insert(key, gtsam.Rot2.fromAngle(np.deg2rad(20)))
initial.print_('initial estimate')
initial.print('initial estimate')
"""
Step 4: Optimize
@ -77,7 +77,7 @@ def main():
with the final state of the optimization.
"""
result = gtsam.LevenbergMarquardtOptimizer(graph, initial).optimize()
result.print_('final result')
result.print('final result')
if __name__ == '__main__':

View File

@ -10,8 +10,6 @@ A visualSLAM example for the structure-from-motion problem on a simulated datase
This version uses iSAM to solve the problem incrementally
"""
from __future__ import print_function
import numpy as np
import gtsam
from gtsam.examples import SFMdata
@ -94,7 +92,7 @@ def main():
current_estimate = isam.estimate()
print('*' * 50)
print('Frame {}:'.format(i))
current_estimate.print_('Current estimate: ')
current_estimate.print('Current estimate: ')
# Clear the factor graph and values for the next iteration
graph.resize(0)

View File

@ -36,7 +36,7 @@ class GroundTruth:
self.cameras = [Pose3()] * nrCameras
self.points = [Point3(0, 0, 0)] * nrPoints
def print_(self, s="") -> None:
def print(self, s="") -> None:
print(s)
print("K = ", self.K)
print("Cameras: ", len(self.cameras))