Merged in feature/matrix_tests (pull request #404)
Some facilities to better test linear inference Approved-by: Mandy Xie <manxie@gatech.edu>release/4.3a0
commit
efefe2d31a
|
@ -138,23 +138,34 @@ namespace gtsam {
|
|||
//}
|
||||
|
||||
/* ************************************************************************* */
|
||||
pair<Matrix, Vector> GaussianBayesNet::matrix() const {
|
||||
Ordering GaussianBayesNet::ordering() const {
|
||||
GaussianFactorGraph factorGraph(*this);
|
||||
KeySet keys = factorGraph.keys();
|
||||
auto keys = factorGraph.keys();
|
||||
// add frontal keys in order
|
||||
Ordering ordering;
|
||||
for (const sharedConditional& cg: *this)
|
||||
for (const sharedConditional& cg : *this)
|
||||
if (cg) {
|
||||
for (Key key: cg->frontals()) {
|
||||
for (Key key : cg->frontals()) {
|
||||
ordering.push_back(key);
|
||||
keys.erase(key);
|
||||
}
|
||||
}
|
||||
// add remaining keys in case Bayes net is incomplete
|
||||
for (Key key: keys)
|
||||
ordering.push_back(key);
|
||||
// return matrix and RHS
|
||||
for (Key key : keys) ordering.push_back(key);
|
||||
return ordering;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
pair<Matrix, Vector> GaussianBayesNet::matrix(boost::optional<const Ordering&> ordering) const {
|
||||
if (ordering) {
|
||||
// Convert to a GaussianFactorGraph and use its machinery
|
||||
GaussianFactorGraph factorGraph(*this);
|
||||
return factorGraph.jacobian(ordering);
|
||||
} else {
|
||||
// recursively call with default ordering
|
||||
const auto defaultOrdering = this->ordering();
|
||||
return matrix(defaultOrdering);
|
||||
}
|
||||
}
|
||||
|
||||
///* ************************************************************************* */
|
||||
|
|
|
@ -74,6 +74,14 @@ namespace gtsam {
|
|||
/// Version of optimize for incomplete BayesNet, needs solution for missing variables
|
||||
VectorValues optimize(const VectorValues& solutionForMissing) const;
|
||||
|
||||
/**
|
||||
* Return ordering corresponding to a topological sort.
|
||||
* There are many topological sorts of a Bayes net. This one
|
||||
* corresponds to the one that makes 'matrix' below upper-triangular.
|
||||
* In case Bayes net is incomplete any non-frontal are added to the end.
|
||||
*/
|
||||
Ordering ordering() const;
|
||||
|
||||
///@}
|
||||
|
||||
///@name Linear Algebra
|
||||
|
@ -81,8 +89,10 @@ namespace gtsam {
|
|||
|
||||
/**
|
||||
* Return (dense) upper-triangular matrix representation
|
||||
* Will return upper-triangular matrix only when using 'ordering' above.
|
||||
* In case Bayes net is incomplete zero columns are added to the end.
|
||||
*/
|
||||
std::pair<Matrix, Vector> matrix() const;
|
||||
std::pair<Matrix, Vector> matrix(boost::optional<const Ordering&> ordering = boost::none) const;
|
||||
|
||||
/**
|
||||
* Optimize along the gradient direction, with a closed-form computation to perform the line
|
||||
|
|
|
@ -142,17 +142,15 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector VectorValues::vector() const
|
||||
{
|
||||
Vector VectorValues::vector() const {
|
||||
// Count dimensions
|
||||
DenseIndex totalDim = 0;
|
||||
for(const Vector& v: *this | map_values)
|
||||
totalDim += v.size();
|
||||
for (const Vector& v : *this | map_values) totalDim += v.size();
|
||||
|
||||
// Copy vectors
|
||||
Vector result(totalDim);
|
||||
DenseIndex pos = 0;
|
||||
for(const Vector& v: *this | map_values) {
|
||||
for (const Vector& v : *this | map_values) {
|
||||
result.segment(pos, v.size()) = v;
|
||||
pos += v.size();
|
||||
}
|
||||
|
|
|
@ -136,6 +136,15 @@ TEST( GaussianBayesNet, optimize3 )
|
|||
EXPECT(assert_equal(expected, actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GaussianBayesNet, ordering)
|
||||
{
|
||||
Ordering expected;
|
||||
expected += 0, 1;
|
||||
const auto actual = noisyBayesNet.ordering();
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianBayesNet, backSubstituteTranspose )
|
||||
{
|
||||
|
@ -152,6 +161,34 @@ TEST( GaussianBayesNet, backSubstituteTranspose )
|
|||
|
||||
VectorValues actual = smallBayesNet.backSubstituteTranspose(x);
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
const auto ordering = noisyBayesNet.ordering();
|
||||
const Matrix R = smallBayesNet.matrix(ordering).first;
|
||||
const Vector expected_vector = R.transpose().inverse() * x.vector(ordering);
|
||||
EXPECT(assert_equal(expected_vector, actual.vector(ordering)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianBayesNet, backSubstituteTransposeNoisy )
|
||||
{
|
||||
// x=R'*y, expected=inv(R')*x
|
||||
// 2 = 1 2
|
||||
// 5 1 1 3
|
||||
VectorValues
|
||||
x = map_list_of<Key, Vector>
|
||||
(_x_, Vector1::Constant(2))
|
||||
(_y_, Vector1::Constant(5)),
|
||||
expected = map_list_of<Key, Vector>
|
||||
(_x_, Vector1::Constant(4))
|
||||
(_y_, Vector1::Constant(9));
|
||||
|
||||
VectorValues actual = noisyBayesNet.backSubstituteTranspose(x);
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
const auto ordering = noisyBayesNet.ordering();
|
||||
const Matrix R = noisyBayesNet.matrix(ordering).first;
|
||||
const Vector expected_vector = R.transpose().inverse() * x.vector(ordering);
|
||||
EXPECT(assert_equal(expected_vector, actual.vector(ordering)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue